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Abstract
This doctoral dissertation proposal addresses the evolving challenges in computer and
network security, emphasizing a need for a comprehensive framework that integrates
proactive prevention, effective detection, and adaptive mitigation strategies. The land-
scape of cybersecurity faces persistent threats from Advanced Persistent Threats (APTs),
ever-changing attack vectors, and the inevitability of human errors. Current security mea-
sures, including user management, firewalls, and Secure Software Development Life Cycle
(SSDLC) practices, provide a foundational defense but fall short against sophisticated
adversaries.

To bolster cybersecurity defenses, a multi-faceted approach is proposed, focusing on
domain-specific prevention, detection, and mitigation of cyber threats.

Prevention of Threats using Moving Target Defense: Traditional security
measures are augmented by a proactive strategy known as Moving Target Defense
(MTD). MTD introduces continuous and random alterations to system configurations,
making reconnaissance computationally expensive for adversaries or trapping them
in exploration loops. Manual deployment of MTD configurations poses challenges,
necessitating automated approaches that balance security benefits and system efficiency.
The goal is to render cyber-attacks economically and logistically infeasible for adversaries.

Detection of False Data Injection in Transportation Networks: Strategic False
Data Injection (FDI) attacks on navigation applications and transportation networks can
lead to severe consequences, such as traffic congestion and disruption of essential services.
Detecting such attacks requires automated mechanisms capable of identifying changes
in traffic patterns. In the absence of public data, strategic decision-making algorithms
are crucial to generating worst-case attack scenarios, informing the development of
countermeasures, and enhancing detection mechanisms. The focus is on developing
automated systems that can detect deviations in traffic patterns and alert authorities to
disarm ongoing threats.

ICS Attack Mitigation Through Resilient Control: The remote control of
Industrial Control Systems (ICS) provides efficiency but also widens the attack surface.
Traditional responses involve resetting compromised software components, but this is
not always feasible in case of critical infrastructure that needs to be highly available.
Time gaps between detection and patching allow adversaries to exploit vulnerabilities,
demanding automated mitigation strategies. The research concentrates on FDI attacks,
particularly 0-stealthy attacks, where adversaries change sensor and actuator values to
destabilize physical processes. The objective is to develop automated attack-resilient
control policies that minimize the worst-case impact of such attacks.
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Addressing these challenges involves leveraging decision-making and especially Rein-
forcement Learning (RL) algorithms, specifically tailored to the unique dynamics of each
scenario. The adaptability of attackers necessitates defender strategies that can adapt
and respond to changing attack tactics. Additionally, information asymmetry calls for
diverse RL models to capture both attacker and defender perspectives. The scalability
of decision-making problems in large-scale scenarios, such as transportation networks,
demands state-of-the-art RL algorithms for efficient solutions.

The finalized doctoral dissertation aims to contribute to the enhancement of cyberse-
curity by developing a comprehensive framework that addresses the dynamic challenges
posed by evolving cyber threats. The proposed strategies encompass prevention, detec-
tion, and mitigation, leveraging state-of-the-art RL algorithms to adapt to the complex
and ever-changing cybersecurity landscape.
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Chapter 1 |
Introduction

Computer and network security typically relies on two main principles. First, security
measures such as user management, firewalls, and common rule-based network and file
access controls are used to prevent unauthorized access and behavior toward computing
resources and software. Second, software development follows the Secure Software
Development Life Cycle (SSDLC or Secure SDLC); developers and engineers regularly test
the software and network stacks for security vulnerabilities and patch them accordingly.
However, even with these rigorous methods in place, the absolute security of software
and networked components cannot be guaranteed in light of Advanced Persistent Threats
(APT) launched by sophisticated and resourceful adversaries, adaptability of attack
vectors toward new software releases, and human error in system architecture.

To thwart cyber-attacks, it is important to implement prevention measures that
make the attack infeasible and uneconomic for adversaries. One effective approach is
proactively obfuscating and changing the system’s attack surface, making it harder for
attackers to perform reconnaissance, thus increasing their uncertainty and cost by keeping
them in an infinite loop of exploration in a scheme called Moving Target Defense (MTD).

Another attempt at ensuring computer infrastructure’s security and continued opera-
tion is detection of security breaches. System administrators use network security tools
to monitor computer networks and disconnect unsafe users and connections. However,
these tools fail in case of an insider attack or when facing 0-day vulnerabilities. This
calls for a domain-specific approach to detect security breaches without relying on the
specifics of the network and security architecture but taking the logic of the underlying
system into account. The detection mechanism should detect system deviations from its
nominal and pre-specified operating points.

Moreover, there is a time gap between the initiation of a cyber-attack and its
detection, during which the attacker can cause significant damage. Computer systems
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like Cyber-Physical Systems (CPS) and Industrial Control System (ICS) that control
critical infrastructure such as chemical and pharmaceutical manufacturing, electricity
generation, or transportation systems must remain highly available, making it impossible
to bring them offline in case of a security threat to prevent damage. Further, once
a security breach is detected, remedial tasks such as software patching, reboots, and
hardening must be implemented that prolong the time available to the adversary to cause
damage. Motivated by this, there is a need for automatic domain-specific mitigation of
threats. In this scenario, the security software can automatically adjust its behavior based
on operational requirements to limit the system’s deviation from its nominal working
parameters, minimizing the harm.

1.1 Domain-Specific Prevention, Detection, and Mitiga-
tion
The cybersecurity landscape is evolving with threats and constant changes in attack
strategies. Moreover, there exists an asymmetry of information between the attackers
and the defenders on what they observe, exacerbating the difficulty of modeling and
strategizing. Therefore, the paramount task is to analyze the current cybersecurity
requirements in a domain-specific manner to capture and formalize the interactions
between the attacker, the targeted system, and defense mechanisms. For this purpose, it
is crucial to understand the specifics of the operations of the systems currently in use.

1.1.1 Attack Prevention Using Moving Target Defense

As mentioned, traditional approaches for security focus on disallowing intrusions by
hardening systems to decrease the occurrence and impact of vulnerabilities using network
and software security tools or on detecting and responding to intrusions, e.g., restoring
the configuration of compromised servers. While these passive and reactive approaches
are useful, they cannot provide perfect security in practice. Further, these approaches let
adversaries perform reconnaissance and planning unhindered, giving them a significant
advantage in information and initiative. As adversaries are becoming more sophisticated
and resourceful, it is imperative for defenders to augment traditional approaches with
more proactive ones, which can give defenders the upper hand.

MTD is a proactive approach that changes the rules of the game in favor of the
defenders. MTD techniques enable defenders to thwart cyber-attacks by continuously
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and randomly changing the configuration of their assets, i.e., networks or hosts. These
changes increase the uncertainty and complexity of attacks, making them computationally
expensive for the adversary [Zheng and Siami Namin, 2018] or putting the adversary in
an infinite loop of exploration [Tan et al., 2019], thus preventing cyber-threats.

System administrators typically have to manually select MTD configurations to be
deployed on their networked systems based on their previous experiences [Hu et al., 2019].
This approach has two main limitations. First, it can be very time-consuming since 1)
there are constraints on data locations, so the system administrator must make sure that
constraints are met before deploying MTD, 2) the physical connectivity of servers cannot
be easily changed, and 3) computation resources are limited. Second, capturing the
trade-off between security and efficiency is difficult since the most secure configuration is
total randomization, but this has high-performance overhead [Chen et al., 2015].

In light of this, it is crucial to provide automated approaches for deploying MTD,
which maximize security benefits for the protected assets while preserving the efficiency
of the system. The key ingredient to automation of MTD deployment is finding a
design model that reflects multiple aspects of the MTD environment [Li and Zheng,
2019,Zheng and Siami Namin, 2018,Prakash and Wellman, 2015,Albanese et al., 2019].
Further, we need a decision-making algorithm for the model to select when to deploy an
MTD technique and where to deploy it [Tan et al., 2019]. Finding optimal strategies
for the deployment of MTD is computationally challenging since there can be a huge
number of applicable MTD deployment combinations, even with a trivial number of
MTD configurations or in-control assets. Further, the adversary might adapt to these
strategies.

1.1.2 Detection of False Data Injection in Transportation Networks

Drivers rely on navigation applications and online information more than before. Fur-
thermore, the availability of social media has accelerated the spread of misinformation.
A malicious actor could manipulate the drivers directly by sending malicious information
through SMS messaging [Waniek et al., 2021], manipulating traffic signals [Chen et al.,
2018,Levy-Bencheton and Darra, 2015,Laszka et al., 2016,Feng et al., 2018,Reilly et al.,
2016], or physically changing the road signs [Eykholt et al., 2018] to interfere with drivers’
route selection. With the availability of social media, the drivers can further spread
this misinformation to their peers to snowball the effect of manipulation. Alternatively,
the adversary can inject false information into the navigation application. For example,
one can place phones in a cart and pull them on the street, tampering with the navi-
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gation application to result in marking the road with heavy traffic and rerouting the
drivers [Schoon, 2020].

Manipulating transit networks can lead to increased traffic congestion and devastat-
ing consequences. Modern societies heavily rely on road networks to access essential
services such as education, healthcare, and emergency services. Moreover, road networks
contribute to economic growth by enabling logistic movements of materials, goods, and
products. Therefore, disruption of transportation networks can lead to food insecurity,
job losses, or even political disarray, such as the Fort Lee scandal [Cillizza, 2015].

Efforts have been made to measure the impact of false information injection on
dynamic navigation applications [Lin et al., 2018], traffic congestion [Waniek et al., 2021],
and navigation applications [Raponi et al., 2022]. However, finding an optimal attack is
generally computationally challenging [Waniek et al., 2021], complicating vulnerability
analysis.

Understanding how strategic attacks may unfold in the domain of False Data Injection
(FDI) attacks against navigation applications is crucial. In the absence of public data,
sequential decision-making algorithms are required to generate worst-case strategic attacks
that can inform the development and evaluation of countermeasures such as detection
mechanisms. Further, automated detection mechanisms should be developed to detect
any changes to typical traffic patterns and alert authorities of the ongoing threat.

1.1.3 ICS Attack Mitigation Through Resilient Control

Centralized and remote control of industrial processes allows more efficient, fault-tolerant,
and robust control of processes. However, connecting sensors and actuators of industrial
processes to computer networks for remote sensing and control also widens the attack
surface of these systems. Previously, physical access was required for adversaries to
sabotage industrial processes. However, with networked ICS and network-connected
sensors and actuators, adversaries can exploit vulnerabilities in the underlying network
to launch attacks on the ICS.

By compromising and tampering with industrial control systems, adversaries can
cause financial loss, physical damage, and even bodily harm. In recent years, we have
seen many attacks on ICS [Hemsley et al., 2018,Miller and Rowe, 2012]. Some of the
most notable examples include the infamous Stuxnet worm [Farwell and Rohozinski,
2011], which targeted Iranian uranium enrichment facilities between 2005 and 2012,
damaging one-fifth of Iran’s enrichment centrifuges and leading to the resignation of the
head of the Atomic Energy Organization of Iran in 2009. The BlackEnergy malware
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attack on the Ukrainian power grid [Kovacs, 2016] in 2015 resulted in 250 thousand
people losing electricity for 6 hours. Other examples include the 1999 attack on Gazprom
infrastructure and the 2012 Flame attack [Miller and Rowe, 2012].

As discussed earlier, this problem arises since even the most secure software is prone
to vulnerabilities [Robles and Choi, 2009, Andreeva et al., 2016]. When attacks are
detected [Giraldo et al., 2019,Urbina et al., 2016,Paridari et al., 2018], system engineers
try to reset these compromised software components to a safe state and ultimately patch
the vulnerability [Foley and Hulme, 2004]. This is good practice; however, resetting
might not be available remotely. Further, patching ICS components requires time since
vendors usually sell these systems as bundled packages. As a result, in case of an attack,
technicians operating these types of systems do not know what is inside and what needs
patching to keep it safe from emerging vulnerabilities and threats [Byres, 2008]. The
time gap between detecting the attack and patching the software leaves the adversary
enough time to cause damage to the ICS or the physical process.

Prior research efforts have investigated the detection and mitigation of adversarial
tampering with ICS in various stages, ranging from ICS software security, through attack
detection mechanisms [Giraldo et al., 2019,Urbina et al., 2016,Paridari et al., 2018], to
proposing fault-tolerant control policies. For example, [Kosut et al., 2010,Fawzi et al.,
2014] studied the estimation and control of linear systems when an adversary corrupts
some of the sensors or actuators. Another relevant field of study is the evaluation of
currently existing detection schemes in different environments and types of attacks on
ICS [Urbina et al., 2016]. Moreover, [Singh et al., 2020] surveyed current ICS software
security tools.

The prior research literature [Fawzi et al., 2014,Kosut et al., 2010] suggests approaches
for attack-detection and attack-resilient control focused on Linear Time Invariant (LTI)
systems. However, most practical physical systems are non-linear. Moreover, [Paridari
et al., 2018,Combita et al., 2019] used redundant trusted sensors/actuators strategically
placed. However, we must always assume that even the most secure components of the
ICS can be exploited. As a result, any future effort on attack detection and attack-resilient
control must consider (1) any physical process, whether linear or not, and (2) compromise
of any signal, regardless of whether the sensor/actuator is trusted or not.

Here, we assume that the adversary has already found vulnerabilities in a certain set
of devices on the ICS network or has physical access to such devices in order to launch
an attack and sabotage the physical processes controlled by ICS. We should also note
that (1) the attack itself and (2) the detection of attacks are out of the scope of this
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dissertation.
Our attention is on FDI attacks through which the adversary changes the values of

sensor and actuator signals instead of blocking the controller’s access to these signals
in order to destabilize the physical process. Specifically, we focus on 0-stealthy attacks
[Teixeira et al., 2015,Pasqualetti et al., 2013], which only change these sensor/actuator
values within the physical boundaries of the process. Our objective is to find an automated
attack-resilient control policy that minimizes the worst-case effect of the attack.

1.2 Approach and Challenges
When faced with decision-making problems in the cyber-security domain, Reinforcement
Learning (RL) algorithms can be a powerful tool [Nguyen and Reddi, 2023,Tong et al.,
2020]. RL finds a sequential strategic decision-making policy to determine optimal defense
mechanisms. However, the scale of the decision-making problem that RL solves can make
the out-of-the-box RL algorithms infeasible for direct use. For example, when dealing
with large-scale transportation networks, the defender needs to take numerous road link
and intersections into account. A simple general-purpose RL algorithm might take days
or weeks to learn the dynamics of the system and compute a solution. This necessitates
developing state-of-the-art RL algorithms to find a solution in a time-efficient manner.

Further, in all previous scenarios, the attacker adopts a strategic approach. When the
security solution attempts to thwart attacks by obfuscating networked assets, the attacker
anticipates changes in these assets to extract as much information as possible. During an
attack, the adversary may purposefully limit the magnitude of damage or changes made to
avoid detection. In the event of a successful breach, the attacker endeavors to destabilize
the system, strategically selecting a sequence of actions to maximize damage. Moreover,
the adversary might adapt to the defenses and change its strategy. The adaptability
of the attacker makes the defender’s learned dynamics of the system obsolete in case
the attacker uses a different strategy. Therefore, for the defender to remain robust, it
should also strategically adapt and respond to the attackers’ changing strategies. This
necessitates finding optimal attack and defense strategies for both the attacker and
defender.

The last obstacle that we need to overcome is the information asymmetry. For
this reason, different RL algorithms and models are required to find the attacker and
defender’s best attack and defense strategy. For instance, in the detection of FDI in
the navigation applications scenario, the defender must detect the anomaly in traffic
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patterns due to the FDI and raise the alarm accordingly. Here, the attacker has full
access to the state of the environment, while the defender only observes the results of
false data injected by the attacker. Therefore, the defender might need to rely on past
traffic pattern history as well as current understanding of the vehicles.

1.3 Organization
This dissertation proposal unfolds in several chapters. Chapter 2 delves into prior
literature on Reinforcement Learning applications for cybersecurity, non-Reinforcement
Learning approaches for FDI attack mitigation, and hierarchical Reinforcement Learning
approaches. Chapter 3 provides the necessary mathematical foundation for understanding
our proposed approach, centered around Reinforcement Learning. In Chapter 4, we
introduce our formal modeling approach and outline the challenges in depth. In Chapter 5
provides formal models for prevention, mitigation, and detection, along with solutions,
particular challenges of Reinforcement Learning in the application-specific domain, and
current findings. Finally, in Chapter 6, we propose a timeline for dissertation completion
and present the expected contributions of the completed dissertation.
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Chapter 2 |
Literature Review

2.1 Reinforcement Learning for cybersecurity
Application of Machine Learning (ML)—especially Deep Reinforcement Learning (DRL)—
for cybersecurity has gained attention recently. [Nguyen and Reddi, 2023] surveyed current
literature on applications of DRL on cybersecurity. These applications include DRL-based
security methods for CPS, autonomous intrusion detection techniques [Iannucci et al.,
2019], and Multi-Agent DRL-based game-theoretic simulations for defense strategies
against cyber attacks.

For example, [Malialis and Kudenko, 2015,Malialis et al., 2015] applied Multi-Agent
DRL on network routers to throttle the processing rate in order to prevent Distributed De-
nial of Service (DDoS) attacks. [Bhosale et al., 2014] proposed a cooperative Multi-Agent
Reinforcement Learning (RL) [Sutton and Barto, 2018] for intelligent systems [Herrero
and Corchado, 2009] to enable quick responses. Another example for Multi-Agent re-
inforcement learning is the fuzzy Q-Learning approach for detecting and preventing
intrusions in Wireless Sensor Networks (WSN) [Shamshirband et al., 2014]. Further-
more, [Tong et al., 2020] proposed a Multi-Agent reinforcement learning framework for
alert correlation based on Double Oracles [McMahan et al., 2003].

2.1.1 Reinforcement Learning for Moving Target Defense

A common scheme in preventing reconnaissance on computer systems is the obfuscation
of assets through MTD. One of the main research areas in Moving Target Defense is
to model interactions between the adversaries and the defenders. In the area of game-
theoretic models for moving target defense, the most closely related work is from [Prakash
and Wellman, 2015], which introduces the model that our work uses (see section 5.1).
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This model can also be used for defense against DDoS attacks [Wright et al., 2016], and
defense for web applications [Sengupta et al., 2017]. Further, in this area, researchers
have proposed MTD game models based on Stackelberg games [Li and Zheng, 2019],
Markov Games [Lei et al., 2017,Tan et al., 2019], Markov Decision Process [Puterman,
1994] [Zheng and Siami Namin, 2018], and FlipIt game [Oakley and Oprea, 2019].

For solving a game model, i.e., finding the optimal playing strategies, numerous
approaches such as solving a min-max problem [Li and Zheng, 2019], non-linear pro-
gramming [Lei et al., 2017], Bellman equation [Tan et al., 2019,Zheng and Siami Namin,
2018], Bayesian belief networks [Albanese et al., 2019], and reinforcement learning [Hu
et al., 2019,Oakley and Oprea, 2019] has been suggested.

2.2 Model-Based Mitigation of False Data Injection in
CPS
In the field of mitigating integrity attacks on the control systems, i.e., attacks that change
the values of sensor readings, the most relevant literature is the work done by [Combita
et al., 2019] where they proposed a solution to integrity attacks by detecting anomalies
using a Kalman filter and mitigating the change in values with analytical redundancy
and Optimal Disturbances Decoupling Observer (ODDO).

[Urbina et al., 2016] propose a strong adversary model that will always be able
to bypass attack-detection mechanisms. They compared multiple detection techniques
and measured their performance against this type of adversary in multiple scenarios of
1) simulations, 2) network data collected from a large Supervisory Control and Data
Acquisition (SCADA), and 3) testbed on real-world systems.

[Fawzi et al., 2014] studies the estimation and control of linear systems, when some
of the sensors or actuators are corrupted by an attacker. First, they characterize the
physical processes on the maximum number of sensor signals that can be compromised.
Second, they show how secure feedback can be used to improve resilience against attacks.
Third, they propose a specific state reconstructor resilient to attacks that is inspired by
techniques used in compressed sensing and error correction. Finally, they show that a
principle of separation of estimation and control holds and that the design of resilient
output feedback controllers can be reduced to the design of resilient state estimators.
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2.3 Hierarchical Reinforcement Learning Applications
Hierarchical Reinforcement Learning (HRL) has gained significant attention due to its
applications and development. These methods have proven to be successful in tasks that
require coordination between multiple agents, such as Unmanned Aerial Vehicle (UAV)
and autonomous vehicles, to complete objectives efficiently.

For instance, [Yang et al., 2018] devised a general framework for combining compound
and basic tasks in robotics, such as navigation and motor functions, respectively. However,
they limited the application to single-agent RL at both levels. Similarly, [Chen et al.,
2019] used attention networks to incorporate environmental data with steering functions
of autonomous vehicles in a HRL manner so that the vehicle can safely and smoothly
change lanes.

In the UAV applications, [Zhang et al., 2021] demonstrated the success of HRL in
the coordination of wireless communication and data collection of UAVs.

Although our problem is in a different domain, the fundamental ideas of these works
are applicable to us since we are dealing with cooperation and coordination between
adversarial agents in finding an optimal manipulation strategy in navigation applications.
The study results indicate that the use of Reinforcement Learning approaches accurately
modeled the effects of false information injection on navigation apps.
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Chapter 3 |
Background

This chapter endeavors to provide foundational knowledge on single-agent (Section 3.1)
and multi-agent (Section 3.3) DRL, alongside prevalent Deep Learning (DL) techniques
integral to DRL, such as convolutional networks (Section 3.4).

3.1 Independent Reinforcement Learning
One of the primary approaches for finding a decision-making policy is Independant
Reinforcement Learning (InRL) [Sutton and Barto, 2018], which focuses on interactions
of a single agent and its environment to maximize the agent’s gain (represented as rewards
or utilities) from the environment. Figure 3.1 shows the interactions between an InRL
agent and its environment. A basic RL environment is a Partially-Observable Markov
Decision Process (POMDP) [Åström, 1965], which can be represented as a tuple:

POMDP = ⟨S,A, T ,R,O⟩. (3.1)

where S is the set of all possible states of the environment, A is the set of all possible
actions by the agent, T is the set of stochastic transition rules, R is the immediate
reward rule of a state transition, and O is the set of observation rules of the agent.

The objective of RL is to find a policy π, which is a mapping from observation space
to action space, such that:

π(ot) 7→ at (3.2)

which maximizes U t
∗ = E

[ ∞∑
τ=0

γτ · rt+τ

∣∣∣∣∣ π

]
(3.3)

where ot ← O(st) is the observation received in time step t when the agent is in state
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Figure 3.1. Independent Reinforcement Learning

st ∈ S, at ∈ A is the action taken after that observation. Assuming ot+1 ← O(st+1) is
the next observation received from the environment, the next state was updated by the
transition rule st+1 ← T (st, at). Finally, rt ← R(st, at, st+1) is the reward received in
time step t after a state transition to st+1 due to action at. Also, the discount factor
γ ∈ [0, 1) prioritizes rewards received in the current time step over future rewards. When
γ = 0, the agent cares only about the current reward, and when γ = 1, the agent cares
about all future rewards equally.

Reinforcement learning aims to maximize the received utility of the agent U∗ (eq. (3.3))
by trial and error: interacting with the environment (randomly, following heuristics, or
based on the experiences that the agent has seen so far). Generally, during the training,
there are two ways to find actions to be taken at each step: (1) Exploitation: we use
the currently trained policy to choose actions, which helps the agent to more accurately
find U∗ values of states. (2) Exploration: to find actions that lead to higher utility by
selecting actions at random and exploring the action/observation space.

As the result of traversing the POMDP, the RL agent collects samples of experiences
that can be used to train its policy function. An experience e ∈ E is a tuple of:

e = ⟨ot, at, ot+1, rt⟩ (3.4)

Algorithm 1 shows the basic workflow of an RL method.
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Algorithm 1: Independent Reinforcement Learning
Result: policy π
o← env.reset();
ϵt ← 1;
for T steps do

if random[0, 1] ≤ ϵt then
a← random_action;

else
a← π(o)

end
(o′, r, done)← env.step(a);
add e = ⟨o, a, o′, r⟩ to E;
update π based on X ∼ E ;
o← o′;
decay ϵt;
if done then

o← env.reset();
end

end

There are two main approaches for finding an RL policy π. We will discuss these
methods in the following subsections.

3.1.1 Action-Value Based Methods

Action-Value RL, also known as Value Iteration, methods or on-policy RL algorithms
that learn the value of an action in each state. Thus, learning the best action that can
maximize the value of subsequent states.

3.1.1.1 Q-Learning

Q-Learning (QL) [Sutton and Barto, 2018] uses a tabular Q function to estimate the
expected future utilities of an action in an observation state (eq. (3.3)):

Q(ot, at) = U t
∗|π (3.5)
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With a tabular approach of storing the Q value for each observation/action, we can find
the value of the Q function by applying the Bellman optimization equation:

Q(ot, at) = (1− αq) ·Q(ot, at) + αq · (rt + γ ·max
a′

Q(ot+1, a′)︸ ︷︷ ︸
TD Target

) (3.6)

where αq is the learning rate of the Q function. The idea for updating the Q function
is that the Q function should minimize the Temporal Difference (TD) error, i.e., the
difference between the predicted Q value, and the actual expected utility (U∗ while
following π). This makes the optimal action policy π as:

at = π(ot)← argmax
a′

Q(ot, a′) (3.7)

One of the approaches for choosing between exploration or exploitation in action-value
RL methods is the ϵ-greedy approach [Sutton and Barto, 2018], where in each step, the
agent explores with probability ϵ or takes the current optimal action with probability
1− ϵ.

3.1.1.2 Deep Q-Learning

When we are dealing with environments with highly dimensional action/observation
spaces, using tabular-based QL is infeasible since 1) the table for storing Q-values might
not fit into memory, and 2) the action and observation spaces need to be enumerated
many times for the algorithm to learn an optimal policy.

To address these challenges, Deep Q-Learning (DQL) [Mnih et al., 2015], as a member
of DRL algorithms family, suggests using a parameterized function to approximate
the Q-value. Using parameterized functions as Q-value approximator makes the DQL
approach feasible for such environments since 1) at most, thousands of parameters are
stored, and 2) parameterized models can generalize the relation between observations and
actions; as a result, learning agents need less time for exploring the observation/action
space.

To optimize the parameters θ, we can use gradient descent to minimize the TD error
of the network. With the same TD target as eq. (3.6), and taking optimal action as
argmaxa′ Qθ(ot, a′), the TD target will be:

∀x∈X∼E : qt
x = rt

x + γ ·max
a′

Qθ(ot
x, a′) (3.8)
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Suppose we have a batch of experiences sampled from the experience replay buffer
X ∼ E . Then, we can define a Bellman Mean Squared Error (BMSE) loss function to
optimize the parameters:

L(θ) = 1
|X|

X∑
x

(
qt

x −Qθ(ot
x, at

x)
)2

(3.9)

Then, we can calculate the gradient of the parameters to minimize the loss, i.e.,
making the Q function to make a more accurate estimation of the action value.

θ ← θ − αθ ·
∂L(θ)

∂θ
(3.10)

where αθ is the learning rate of the Q parameters. Instead of directly applying the
gradients, one can use improved optimization algorithms such as RMSProp [Hinton et al.,
] to find optimized parameters faster.

3.1.1.3 Double-Q-Learning

One drawback of DQL is that the TD target is dependent on the network parameters
(eqs. (3.8) and (3.9)), making the optimization objective a moving target. Double Deep-
Q-Learning (DDQL) [Van Hasselt et al., 2016], therefore, was introduced to tackle this
issue by taking a parameterized function Qθ′ to mirror the Q-function and calculating
the TD Target based on it. This makes calculating the TD target as:

∀x∈X∼E : qt
x = rt

x + γ ·max
a′

Qθ
′

(ot
x, a′) (3.11)

The parameters of the original network are updated by calculating the TD loss
(eq. (3.9)) and applying the gradients (eq. (3.10)). Then, the target function parameters
can be updated by a moving average on the original Q parameters.

θ
′ ← (1− τθ) · θ

′ + τθ · θ (3.12)

where τQ is the transfer rate of the target network.
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3.1.1.4 Deep Deterministic Policy Gradients

While DQL is feasible for discrete action spaces where it is possible to enumerate all
possible actions to calculate the TD target (maxa′ Q, eq. (3.6)) to update the policy, and
the policy function (argmaxa′ Q, eq. (3.7)) when taking actions, it is infeasible to use
them with continuous action spaces.

This led to the emergence of policy gradient methods such as Deep Deterministic Policy
Gradients (DDPG) [Lillicrap et al., 2015]. This algorithm uses a separate parameterized
function µΘ to calculate the TD target and the optimal policy. This function is updated
by gradient ascent such that it maximizes the action value, i.e., performance, in each
observation state:

J(Θ) = 1
|X|

X∑
x

Qθ
(
ot

x, µΘ(ot
x)
)

(3.13)

With this, the parameters are updated by maximizing the performance of this policy
J :

Θ← Θ + αΘ ·
∂J(Θ)

Θ (3.14)

Using the target policy function, similar to DDQL (section 3.1.1.3), we can calculate
the TD target with:

∀x∈X∼E : qt
x = rt

x + γ ·Qθ
′
(

ot
x, µΘ′

(ot
x)
)

(3.15)

The parameters of the target network can be updated similarly to the target network
of DDQL (eq. (3.12)):

Θ′ ← (1− τΘ) ·Θ′ + τΘ ·Θ (3.16)

where τΘ is the target transfer rate of the policy function. This makes the optimal policy:

at = π(ot)← µΘ(ot) ≈ argmax
a′

Qθ(ot, a′) (3.17)

One challenge in DDPG is exploration. Alongside the ϵ-Greedy (section 3.1), to better
sample actions that update the policy function more accurately, the exploratory policy
π′ can be constructed by adding a sampled noise N to the original policy. This noise can
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be sampled from a correlated distribution such as Uhlenbeck-Ornstein (OU) [Uhlenbeck
and Ornstein, 1930] process.

at = π′(ot)← π(ot) +N (3.18)

3.1.2 Value-Based-Methods

Action-value-based methods (section 3.1.1) are off-policy RL algorithms. Any experience
sample collected, i.e., random, with noisy policy, or deterministic, can be used for their
training. However, these methods do not make good use of experience samples, and each
sample needs to be used for training multiple times, making the algorithms slow. Further,
the need for an experience replay buffer makes the algorithms memory-inefficient. The
other family of DRL algorithms is the value-based, a.k.a. policy iteration methods. These
algorithms are more sample-efficient and are typically faster, making them more suitable
for POMDPs where collecting samples, e.g., simulating the environment, is expensive.

These algorithms are based on a stochastic parametric policy function at ∼ πΘ(ot)
that outputs parameters for a desirable policy distribution per each observation state ot,
which is defined over the action space of the agent.

at ∼ πΘ(ot) (3.19)

The random distribution, depending on the action space, can be either a Normal
distribution for general continuous spaces, a Dirichlet distribution for allocation spaces,
or a Multinoulli distribution for categorical, i.e., discrete, spaces.

Further, a parameterized critic function V θ
π learns the expected discounted reward of

each observation state given the policy function π is followed (eq. (3.3)).

3.1.2.1 Stochastic Policy Gradient

In Stochastic Policy Gradient (SPG) [Sutton et al., 1999], the idea behind updating the
actor function πΘ is to increase the probability of actions suggested by the policy that
has a positive advantage, i.e., they produce a better return than expected by the critic
and decrease the probability of actions that result in a negative advantage.
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To calculate the advantage Â(ot, at) for each experience sample, we can use:

Â(ot, at) = rt + γ · Vπ(ot+1)− V (ot) (3.20)

then, the policy performance J can be calculated as:

J(Θ) = 1
|τ |

|τ |∑
t

log πΘ(at|ot) · Â(ot, at) (3.21)

where π(at|ot) is the probability that policy function samples action at in observation state
ot. Finally, by applying a gradient ascent algorithm, we can improve the performance of
the policy:

Θ← Θ + αΘ ·
∂J(Θ)

∂Θ (3.22)

Based on the advantage Â, we can calculate the return R̂(ot, at) of the observation
state as:

R̂(ot, at) = Â(ot, at) + Vπ(ot) (3.23)

then, the loss function for the critic Vθ is the BMSE:

L(θ) = 1
|τ |

|τ |∑
t

(
Vπ(ot)− R̂(ot, at)

)2
(3.24)

by applying a gradient descent method, we can decrease the value function loss:

θ ← θ − αθ ·
∂L(θ)

∂θ
(3.25)

Note that, unlike the off-policy algorithms (section 3.1.1), the experience samples
used to calculate the performance of the actor function (eq. (3.21)) and loss of the critic
(eq. (3.24)) in on-policy algorithms such as SPG needs to be drawn from one trajectory
τ of continuous interactions of the RL agent with the environment.

3.1.2.2 Generalized Advantage Estimation

The main issue with calculating the advantage Â in SPG is that they (eq. (3.20)) highly
depend on the accuracy of the critic, which may result in poor advantage estimation.
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Generalized Advantage Estimation (GAE) [Schulman et al., 2016] emerged as a method
to rely more on exact rewards received while traversing a trajectory and less on the value
function.

ÂGAE(ot, at) =
∞∑

τ=0
(γλ) · δVπ

t+τ (3.26)

where λ ∈ [0, 1] is the residual coefficient and δVπ
t is the TD residual of Vπ:

δVπ
t = rt + γ · Vπ(ot+1)− Vπ(ot) (3.27)

There are two important cases of λ. When λ = 0, the GAE estimate is equivalent to
eq. (3.20):

ÂGAE(ot, at)|λ=0 = rt + γVπ(ot+1)− Vπ(ot) (3.28)

When λ = 1, the GAE is the discounted sum of all future rewards in the trajectory minus
the value of the current state, i.e., Monte-Carlo (MC) estimate:

ÂGAE(ot, at)|λ=1 =
∞∑

τ=0
γτ · rt+τ − Vπ(ot) (3.29)

In SPG methods, GAE can replace the advantage estimation (eq. (3.20)) to increase
the stability of the training for both the actor (eq. (3.21)) and critic (eqs. (3.23) and (3.24))
updates.

3.1.2.3 Trust Region and Proximal Policy Optimization

One of the main concerns in the SPG is that the policy function might be updated
excessively after each gradient ascent step, leading to unstable training. Algorithms
such as Trust Region Policy Optimization (TRPO) [Schulman et al., 2015] or Proximal
Policy Optimization (PPO) [Schulman et al., 2017] limit the amount of policy updates by
penalizing the actor performance loss proportional to the Kullback–Leibler (KL) [Kullback
and Leibler, 1951] divergence of the new policy to the old one or applying clipping on the
advantage, respectively. Further, instead of increasing or decreasing the raw probability
of actions, they consider the ratio of change r(Θ):

rt(Θ) = πΘ(at|ot)
πΘold (at|ot) (3.30)
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where Θold is the policy parameters before the gradient ascent step. TRPO’s policy
performance [Schulman et al., 2015] is calculated as:

J(Θ) = 1
|τ |

|τ |∑
t

rt(Θ) · Â(ot, at)− c1 ·KL
[
πΘ(·|ot)∥πΘold (·|ot)

]
(3.31)

where c1 is the KL coefficient. PPO replaces the KL penalty of TRPO with a ratio
clipping. The rationale is that the KL penalty only applies to the actions, and observation
states that the policy function is being trained on does not consider other actions. With
this, PPO’s policy performance [Schulman et al., 2017] function J will be:

J(Θ) = 1
|τ |

|τ |∑
t

min
[
rt(Θ) · Â(ot, at), clip (rt(Θ), 1− ϵ, 1 + ϵ) · Â(ot, at)

]
(3.32)

where ϵ is the clipping threshold for the changes in action distribution.
Unlike off-policy algorithms (see section 3.1.1), external exploration methods such

as adding noise or random actions should not be used with on-policy RL algorithms
since the value function, and thus the calculated advantage, is based on policy function.
To encourage exploration, an entropy [Shannon, 1948a,Shannon, 1948b] bonus can be
applied to the performance function:

JE(Θ) = J(Θ) + 1
|τ |

|τ |∑
t

c2 · S[πΘ](ot) (3.33)

where c2 is the entropy coefficient, and S[πΘ](ot) is the entropy of the policy function at
ot.

3.2 Game Theory
A Normal-Form Game (NFG) n-player game Gn can be expressed as Gn = ⟨P, {Πp}, Up(π)⟩
where, P is set of all players, Πp is “pure strategy set”, and Up is the “utility profile”
for each player p ∈ P . An Extensive-Form Game (EFG) allows for sequential decision
making that is described as Gn = ⟨P, T , Up(π), {Op}p∈P , {Ap}p∈P ⟩, where T is the game
tree, Op is the observation rules of player p, and Ap(op) is the action set available to
player p when it observes op.
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3.2.1 Pure Strategy

A “pure strategy” for player p, πp ∈ Πp in an EFG is a deterministic policy function
which, given the current observation of the player from the environment, produces an
action to be taken by the player:

Pure Strategy : πp(op) 7→ Ap(op) (3.34)

3.2.2 Utility Profile

A utility profile Up(π) 7→ R of policies π ← {πp}p∈P gives the amount of “reward” or
“utility” that player p receives if all players follow π.

In a “zero-sum game”, all utilities received by all players will sum to zero, regardless
of the policy they choose, meaning that a player’s reward will come at the cost of other
players:

Zero-Sum Game :
P∑
p

Up(π) = 0 (3.35)

in a “general-sum game”, this equation does not hold; therefore, with better strategies,
all players can potentially increase their utility.

3.2.3 Mixed Strategy

One way to represent a stochastic policy is to have it as a probability distribution over pure
strategies. A mixed strategy of agent p is a probability distribution σp = {σp(πp)}πp∈Πp

over the agent’s pure strategies Πp where σp(πp) is the probability that agent p, chooses
policy πp. Since a mixed strategy σp is a probability distribution over a finite set of pure
strategies, it satisfies:

∀πp∈Πp 0 ≤ σp(πp) ≤ 1 (3.36)∑
πp∈Πp

σp(πp) = 1 (3.37)

We denote Σp as the set of all mixed strategies available to agent p. The sum of
future discounted utilities of players, when they are following mixed strategies σ and
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σ ← {σp}p∈P can be calculated as:

Up(σ) =
∑

π∈Π

(
P∏
p

σp(πp)
)
· Up(π) (3.38)

where Π← (Π1×Π2×· · ·×Πp). This is directly deducted from probability rules: utility
from π times the probability that π occurs summed over all strategy profiles π ∈ Π.

3.2.4 Best Response

We assume all players in G are rational, i.e., they always choose a policy that maximizes
their utility. Formally, a pure strategy Best Response (BR) for player p (π∗

p) to opponents’
strategy profile π−p is defined as:

Pure Strategy Best Response : π∗
p(π−p) = argmax

πp∈Πp

Up({πp, π−p}) (3.39)

A similar formulation can be held for a mixed strategy BR:

Mixed Strategy Best Response : σ∗
p(σ−p) = argmax

σp∈Σp

Up({σp, σ−p}) (3.40)

3.2.5 Nash Equilibrium

A strategy profile for all players π∗ ← {π∗
p}p∈P is a Pure-Strategy Nash Equilibrium

(PSNE) [Nash, 1951] iff :

∀p∈P∀πp∈Πp : Up(π∗) ≥ Up({πp, π∗
−p}) (3.41)

A pure strategy Nash Equilibrium (NE) [Nash, 1951] is not available for all normal-
form games. Similar to a pure strategy NE, a mixed strategy profile σ∗ ← {σ∗

p}p∈P is
Mixed-Strategy Nash Equilibrium (MSNE) [Nash, 1951] iff :

∀p∈P∀σp∈Σp : Up(σ∗) ≥ Up({σp, σ∗
−p}) (3.42)

That is, all players are playing with their BR to all opponents’ strategies, and neither
player can increase their expected utility without having their opponents change their
strategy. A MSNE for a zero-sum game can be calculated with a min-max formulation
through a Linear Program (LP) in linear time. For general-sum games, the problem
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of finding MSNE is PPAD-Complete [Shoham and Leyton-Brown, 2008,Lanctot et al.,
2017]; however, it can be calculated with approximation methods such as ϵ-equilibrium
in polynomial time [McKelvey et al., 2006].

3.2.6 Double Oracles

In zero-sum normal form games where the size of the strategy set of each player is
extremely large, DO method can be used to calculate the MSNE iteratively. DO calculates
the payoff matrix for the subgame Gt

n that is restricted to policy space {Πt
p}p∈P . At each

iteration t of the DO algorithm, a MSNE (σ∗,t) is calculated, and each player adds the best
response pure strategy π∗,t+1

p (σ∗,t
−p) to its strategy set Πt+1

p ← Πt
p ∪ {π∗,t+1

p }. [McMahan
et al., 2003] showed that the MSNE of subgames will converge to the MSNE of the game.
Figure 3.2 shows the DO algorithm.

Π0start Πt π∗,t+1
p (σ∗,t

−p)

Πt+1
p ← Πt

p ∪ {π∗,t+1
p }

σ∗,t

Finish

Solve Restricted Game Calcu
lat
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C
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w
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Figure 3.2. The Double Oracle Algorithm
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3.3 Multi-Agent Reinforcement Learning
RL operates under the assumption that the POMDP environment is stationary, meaning
that the transition rules remain fixed, though they may be stochastic. However, in the
presence of learning opponents adapting to the environment, as in the case of Multi-Agent
Reinforcement Learning (MARL), conventional RL approaches falter. This is because the
opponents modify the transition rules of the system whenever they alter their strategy,
rendering the prior understanding of the environment and other agents’ behavior obsolete.
MARL approaches can tackle the adaptive behavior of agents by making the learning
environment stationary for each agent via redundant information.

A multi-agent RL environment for n agents is described by a Multi-Agent Partially-
Observable Markov Decision Process (MAPOMDP) [Albrecht et al., 2024], which is a
relaxed version of an EFG (see Section 3.2), where the strong assumption of game-tree
T with entire history is relaxed to a transition rule with Markovian property, where
the transition rules only take into account the latest state the agent (or “player”) is in.
Further, the same action space is considered for all states for all agents.

MAPOMDP is an extension of a POMDP, which can be represented as a tuple:

MAPOMDP = ⟨P,S, {Ap}p∈P , T , {Rp}p∈P , {Op}p∈P ⟩ (3.43)

where P is the set of agents, Ap is the action space, and Op is the observation rule for
agent p ∈ P . The transition rule T is extended to change the state based on joint action
for all agents: st+1 ← T (st, {at

p|at
p ∈ Ap, p ∈ P}). Similarly, the rewarding rule for agent

p, Rp is based on the joint action of all agents: rt
p ← Rp(st, {at

p|at
p ∈ Ap, p ∈ P}, st+1).

Then, each agent p observes ot
p ← Op(st).

3.3.1 Value Decomposition Networks

In a cooperative setting where the agents are maximizing a joint reward function Rp ← R,
a Value Decomposition Network (VDN) [Sunehag et al., 2018] can be used to train
agents simultaneously. VDN learns a joint action-value (see Section 3.1.1) function
Qtot(ot, at) that is based on individual observation states ot ← {ot

p}p∈P and joint actions
at ← {at

p}p∈P :

Qθ
tot(ot, at) =

P∑
p

Qθp(ot
p, at

p) (3.44)
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the loss function of Qθ
tot can be defined similarly to Equation (3.9):

L(θ) = 1
|X|

|X|∑
x

(
qt

x,tot −Qθ
tot(ot, at)

)2
(3.45)

This way, the individual action for each agent p is the action that maximizes its own
action value:

πp(ot
p)← argmax

a′
Qθp(ot

p, a′) (3.46)

A recent study [Rashid et al., 2020] proved that as long as the Qtot function is
monotonic on individual parametric Qθp , the learning is correct. Further, they created
QMix by replacing the ∑ in Equation (3.44) with a parametric monotonic mixing
algorithm that takes a joint observation of the system into account to increase the
performance of learning.

3.3.2 Multi-Agent Deep Deterministic Policy Gradients

In a competitive or cooperative setting, Multi-Agent Deep Deterministic Policy Gradients
(MADDPG) [Lowe et al., 2017] can be used to train multiple RL agents. MADDPG,
which is a Multi-Agent extension of the DDPG algorithm (see Section 3.1.1.4), follows
a centralized training, decentralized execution paradigm where the information from all
agents are sent to a centralized function to train.

Specifically, MADDPG keeps the following parameterized functions for each agent

Action Value Function : Qθp

(
xt, {µ̂ϕj

p(ot
j)}j∈P

)
(3.47)

Policy Function : µΘp(ot
p) (3.48)

Other Agents Policy Approximator : µ̂ϕj
p(ot

j) (3.49)

where Qθp is the action-value and x is a joint state representation, µΘp(ot
p) is the action,

i.e., policy, function, and µ̂ϕj
p is the agent p’s action approximation of agent j. This

approximation is a stochastic parametric distribution, where µ̂ϕj
p(at

j|ot
j) is the probability

that agent j takes action at
j when it observes ot

j. The loss and performance of these
functions can be represented by:

qt
x,p = rt

p + Qθp(xt+1, {µ̂ϕp
j (ot+1

j )}j∈P ) (3.50)
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L(θp) = 1
|X|

|X|∑
x

(
qt

x,p −Qθp(xt, {at
j}j∈P )

)2
(3.51)

J(Θp) = 1
|X|

|X|∑
x

Qθp

(
xt, {at

j}j∈P,j ̸=p ∪ µθp(ot
p)}
)

(3.52)

J(ϕj
p) = 1

|X|

|X|∑
x

log µ̂ϕj
p(at

j|ot
j) + λS[µ̂ϕj

p ](ot
j) (3.53)

where S[µ̂ϕj
p ](ot

j) is the entropy of µ̂ϕj
p at ot

j and x ∈ X is an experience in a batch of
experiences sampled from the experience replay buffer.

3.3.3 Policy Space Response Oracles

Policy Space Response Oracles (PSRO) [Lanctot et al., 2017] algorithm uses the DO (see
Section 3.2.6) method to cast the problem of multi-agent RL into single-agent RL. The
change is that instead of enumerating the strategy set in search of BR (see Section 3.2.4),
PSRO assumes that a single-agent DRL produces an approximate best-response π+ which
improves the feasibility of finding a solution in MAPOMDPs with multi-dimensional
action/observation spaces. Algorithm 2 shows a pseudocode for this method.

Algorithm 2: Policy Space Response Oracles
Require: Initial strategy sets Π ;
Compute Expected Utilities Uπ for each strategy profile π ∈ Π ;
Compute MSNE of Π as σ∗ ;
for many epochs do

for each player p do
for many episodes do

Sample π∗
−p ∼ σ∗

−p;
Train π+

p (π−p) using independent RL;
end
Πp ← Πp ∪ {π+

p };
end
Compute Uπ for new strategies ;
Compute MSNE of Π as σ∗ ;

end
Output current solution σ∗ ;
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3.4 Convolutional Neural Networks
A Convolutional Neural Networks (CNN) [Venkatesan and Li, 2017] is used for summa-
rizing information from a high-dimensional image. It uses local connections of [Li et al.,
2022] each image pixel instead of global connections to share weight between local pixels.
Finally, a CNN down-samples image scale using a pooling layer [Fukushima, 1980]. A
basic Convolution operator ⊗ is for input image f and convolution kernel h is:

[f ⊗ h]m,n =
∑

j

∑
k

hj,kfm−j,n−k (3.54)

Then, a pooling layer summarizes the information from adjacent feature outputs of
the convolution to reduce feature size. For example, a maxpool with size 2× 2 selects the
maximum value of each 2× 2 adjacent cell from [f ⊗ h] into one cell of output.

3.4.1 Graph Convolutional Networks

Similar to CNN (Section 3.4), a Graph Convolutional Network (GCN) [Kipf and Welling,
2016,Morris et al., 2019] summarizes information from graph nodes and edges using DL.
In its simplest form, a GCN layer can be expressed as:

H(X) = σ
(
D̃− 1

2 ÃD̃− 1
2 XW

)
(3.55)

where Ã = A+IN is the adjacency matrix of the undirected graph G with self-connections
(IN is the identity matrix), D̃ii = ∑

j Ãij is a diagonal matrix that sums the row i of the
adjacency matrix, W are the parameters of this layer, and σ is the activation function
of this layer. In short, a GCN averages information from neighboring nodes in a graph
with trainable weights into feature vectors. With the help of pooling layers, such as max
pooling over neighbors, a GCN can reduce the dimensionality of feature vectors.

27



Chapter 4 |
Research Method

To solve the problems of prevention, detection, and mitigation of security threats, first,
we model the interactions between the defender, adversary, and the environment as a
MAPOMDP (see Section 3.3). Further, using the PSRO (see Section 3.3.3), we can
cast the problem of MARL into iterations of InRL based on a black-box model where
neither the adversary nor the defender has access to the policy of the opponent and only
observe the result of opponent affecting the environment. The final challenge is finding
or designing an appropriate InRL algorithm to find a BR (see Section 3.2.4).

4.1 Strategic Defense as a MAPOMDP
In each scenario, the game model should represent interactions between the adversary
and the defender and their joint environment. Each player will receive rewards based on
achieving their respective objectives.

In the prevention scenario, the attacker aims to gain as much knowledge as possible
regarding target assets, and the defender tries to obfuscate assets in control to prevent
reconnaissance. Thus, the defender can gain a reward based on the information not
exposed to the adversary.

In the mitigation scenario, the attacker aims to inject false data into a CPS, and
the defender aims to prevent deviations of the CPS from its nominal point. Here, we can
form a MAPOMDP where the attacker’s reward is proportional to the system’s deviation
from its nominal point, and the defender will receive a negative of that amount.

Finally, in the detection, the adversary aims to inject false data into a transportation
network to increase traffic falsely and reroute the vehicles. The defender aims to detect it
immediately without raising false alarms. In this case, the attacker will receive a reward
proportional to the amount of extended travel time as a result of FDI, and the defender
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will receive a reward equivalent to the negative of total travel time for all vehicles.
The internal system dictates the rules of the system transition. For example, in the

mitigation scheme against FDI in CPS, the system transition rules can be expressed as
differential equations pertaining to the system in control. In the detection of FDI in
transportation networks, we can assume that the transportation network graph is known,
and vehicles choose their path based on the perceived shortest path to their destination.

Figure 4.1 shows the interactions between the attacker and the defender with respect
to their joint environment.

Environment AttackerDefender

envd[σa]

enva[σd]
at

d

ot
d

ot
a

at
a

σ∗
d

σ∗
a

Figure 4.1. A two-player game between the attacker and the defender as a MAPOMDP.

4.2 Two Player Game Solution Concept
The aim of both agents is to maximize their reward. As we are considering a rational
adversary and a defender, we can assume that they always pick a strategy that maximizes
their own utility. As MAPOMDP is inherently an EFG, we can apply the same concept
of MSNE to finding their best strategy.

A best response mixed strategy σ∗
p(σ−p) (see Section 3.2.4) provides maximum utility

for agent p given that its opponent −p is using mixed strategy σ−p. Formally, if the
opponent −p is using a mixed strategy σ−p, then player p’s best response σ∗

p is

σ∗
p(σ−p) = argmax

σp

Up(σp, σ−p). (4.1)

We find each player’s optimal strategy, assuming that its opponent always uses a
best-response strategy. This formulation is, in fact, equivalent to finding a MSNE of the
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players’ policy spaces Πa and Πd. Formally, a profile of mixed strategies (σ∗
a, σ∗

d) is a
MSNE iff

∀p∈{a,d}∀σp∈Σp : Up(σ∗
p, σ∗

−p) ≥ Up(σp, σ∗
−p) (4.2)

That is, neither player can increase its expected utility by unilaterally changing its
strategy.

In the cybersecurity domain, where the agents can have extremely large policy spaces,
it is infeasible to enumerate them in search of MSNE. The rationale of PSRO (see
Section 3.3.3) is that an InRL algorithm will find an approximate best-response from the
player’s strategy space. Then, we can iteratively find the best response for both players
subject to the policies that have been explored before, i.e., has been produced by InRL,
according to the DO (see Section 3.2.6). DO guarantees the convergence of MSNE of
restricted policies to the MSNE of the full MAPOMDP.

When computing an approximate best response (π+
p (σ∗

−p)) for a player against its
opponent’s restricted MSNE strategy, the opponent’s strategy σ∗

−p is fixed, so we may
consider it to be part of the player’s environment. As a result, we can cast the problem
of finding an approximate best response as InRL.

Given the different action/observation space types in the environment for each player,
i.e., discrete, continuous, or allocation, different InRL algorithms (see Section 3.1) can
be used. However, an out-of-the-box general purpose InRL algorithm can not always
be used as it might be infeasible to find a BR with that algorithm. For example, in
highly-dimensional continuous applications, a simple DDPG (see Section 3.1.1.4) might
require millions of experience samples to converge at a solution. The need for calculating
a BR multiple times might exacerbate the difficulty of working with these algorithms.
This makes the need for development of new InRL algorithms

4.3 Optimal Defense Decision-Making Framework
We propose our framework to find the MSNE of the game and, therefore, the optimal
decision-making policy for the adversary and the defender. Algorithm 3 shows a pseudo-
code of our framework.

We start by initializing the adversary’s and defender’s strategy sets Π0
a and Π0

d with
arbitrary heuristic policies. From this stage, we proceed in iterations. In each iteration,
first, we compute an MSNE (σ∗

a, σ∗
d) of the game restricted to the current strategy sets
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Algorithm 3: Adaptive Solver
Result: set of pure policies Πa and Πd

Πa ← attacker heuristics;
Πd ← defener heuristics;
while Up(σp, σ−p) not converged do

σa, σd ← solve_MSNE(Πa, Πd);
θ ← random;
π+

a ← train(T ·Ne, enva[σd], θ);
Πa ← Πa ∪ π+

a ;
assess π+

a ;
σa, σd ← solve_MSNE(Πa, Πd);
θ ← random;
π+

d ← train(T ·Ne, envd[σa], θ);
Πd ← Πd ∪ π+

d ;
assess π+

d ;
end

Πa and Πd, take the adversary’s equilibrium mixed strategy σ∗
a and train an approximate

best-response policy (π+
d (σa)) for the defender with a InRL algorithm assuming that

the adversary uses σa. Next, we add this new policy to the defender’s set of policies
(Πd ← Πd ∪ {π+

d }).
Then, we do the same for the adversary. First, find the MSNE strategy of the defender

(σd), and train an approximate best-response policy (π+
a (σd)) for the adversary, assuming

that the defender uses σd. Then, we add this new policy to the adversary’s set of policies
(Πa ← Πa ∪ {π+

a }).
Each invocation of InRL, denoted as train() in Algorithm 3, receives the limit on

the number of training steps T of training and initial parameters θ. Moreover, we let
envp[σ−p] denote the InRL environment for player p when its opponent plays a mixed
strategy σ−p.

During each time step of the InRL training, both players need to decide on an action.
The learning agent either chooses an action randomly (i.e., exploration), or follows its
current policy. The opponent, whose strategy is a fixed mixed strategy σ−p, refers to a
pure strategy π−p ∈ Π−p with probability distribution σ−p and follows that policy.

The MSNE payoff evolves over the iterations of the DO algorithm: whenever we add
a new policy for a player, which is trained against its opponent’s best-mixed strategy
so far, the MSNE changes in favor of the player. We continue these iterations until the
MSNE payoff of the defender and the adversary (Up(σ∗

p, σ∗
−p)) converges (see Figure 3.2).
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Formally, we say that the MSNE is converged for both players iff

∀p∈{a,d} : Up(π+
p , σ∗

−p) ≤ Up(σ∗
p, σ∗

−p) (4.3)

where σp is player p’s current MSNE strategy and π+
p is the approximate best response

found for player p against its opponent’s current MSNE strategy. Convergence of the
algorithm means that neither the adversary nor the defender could perform better by
introducing a new policy.

4.4 Challenges
The first and foremost difficult challenge in finding the best prevention, detection, or
mitigation strategy is, in fact, designing a game model. In the prevention problem (see
Section 5.1), we used the model of [Prakash and Wellman, 2015]. For the mitigation
scheme (see Section 5.2), we developed a practical, though simplistic, model of a CPS.
In the detection scheme (Section 5.3), we used the model of data from [Transportation
Networks for Research Core Team, 2020] to simulate a transportation network and
devised a threat and defense model based on FDI.

The second issue that needs to be resolved is selecting or developing an InRL method
(train function in Algorithm 3). In the [Prakash and Wellman, 2015] model for prevention,
the action space for both players is discrete, so it is easy to select DQL (see Section 3.1.1.2)
as an InRL algorithm for BR oracle. Similarly, in the mitigation method, as we are dealing
with low-dimensional continuous observation/action spaces, a DDPG (see Section 3.1.1.4)
algorithm will be the appropriate BR oracle for both players. In the detection method,
the defender has a simple discrete action space, either raising or not raising the alarm.
Thus, a DQL algorithm will be the BR oracle. However, an out-of-the-box DDPG will
not be feasible for the attacker as it has a highly dimensional constrained continuous
action space. Hence, we sought to develop a Hierarchical Multi-Agent Reinforcement
Learning (HMARL) InRL algorithm as the attacker’s BR oracle.
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Chapter 5 |
Prevention, Detection, and Miti-
gation

In the introduction (Chapter 1), we presented three problems: prevention, detection,
and mitigation of cyberthreats. In this chapter, we formalize our threat, defense, and
environment model, we bring challenges of applying our solution approach (Chapter 4),
and discuss our findings for these problems.

5.1 Attack Prevention Using Moving Target Defense
Moving Target Defense (MTD) is a proactive defense approach that aims to thwart
attacks by continuously changing the attack surface of a system, e.g., changing host
or network configurations, thereby increasing the adversary’s uncertainty and attack
cost. To maximize the impact of MTD, a defender must strategically choose when and
what changes to make, taking into account both the characteristics of its system as well
as the adversary’s observed activities. Finding an optimal strategy for MTD presents
a significant challenge, especially when facing a resourceful and determined adversary
who may respond to the defender’s actions. In this section, we propose a multi-agent
partially-observable MDP model of MTD based on the model of [Prakash and Wellman,
2015] and formulate a two-player general-sum game between the adversary and the
defender. To solve this game, we used the framework of Section 4.3. Finally, we provide
experimental results to demonstrate the effectiveness of our framework in finding optimal
policies. The findings described here are published at 2020 Conference on Decision and
Game Theory for Security [Eghtesad et al., 2020].
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5.1.1 Model

In this adversarial model, two players, a defender and an adversary (p = a and p = d,
resp.), compete for control over a set of servers. At the beginning of the game, all servers
are under the control of the defender. To take control of a server, the adversary can
launch a “probe” against the server at any time, which either compromises the server
or increases the success probability of subsequent probes. To keep the servers safe, the
defender can “reimage” a server at any time, which takes the server offline for some time,
but cancels the adversary’s progress and control. The goal of the defender is to keep
servers uncompromised, i.e., under the defender’s control, and available, i.e., online. The
goal of the adversary is to compromise the servers or make them unavailable.

5.1.1.1 Environment and Players

There are M servers and two players, a defender and an adversary. The servers are
independent of each other in the sense that they are independently attacked, defended,
and controlled. The game environment is explained in detail in the following subsections.

5.1.1.2 State

Time is discrete, and in a given time step τ , the state of each server i is defined by tuple
sτ

i = ⟨ρ, χ, υ⟩ where

• ρ ∈ N0 represents the number of probes lunched against server i since the last
reimage,

• χ ∈ {adv, def } represents the player controlling the server, and

• υ ∈ {up} ∪ N0 represents if the server is online (i.e., up) or if it is offline (i.e.,
down) with the identifier of the time step in which the server was reimaged.

5.1.1.3 Actions

In each time step, a player may take either a single action or no action at all. The
adversary’s action is to select a server and probe it. Probing a server takes control of it
with probability 1−e−α·(ρ+1) where ρ is the number of previous probes and α is a constant
that determines how fast the probability of compromise grows with each additional probe,
which captures how much information (or progress) the adversary gains from each probe.
Also, by probing a server, the adversary learns whether it is up or down.
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The defender’s action is to select a server and reimage it. Reimaging a server takes
the server offline for a fixed number ∆ of time steps, after which the server goes online
under the control of the defender and with the adversary’s progress (i.e., number of
previous probes ρ) against that server erased (i.e., reset to zero).

5.1.1.4 Rewards

Prakash and Wellman [Prakash and Wellman, 2015] define a family of utility functions.
The exact utility function can be chosen by setting the values of preference parameters,
which specify the goal of each player. The value of player p’s utility function up at a
particular, as described by Equations (5.1) and (5.2), depends on the number of servers
in control of player p and the number of servers offline. Note that the exact relation
depends on the scenario (e.g., whether the primary goal is confidentiality or integrity),
but in general, a higher number of controlled servers yields a higher utility.

up(nc
p, nd) = wp · f

(
nc

p

M
, θp

)
+ (1− wp) · f

(
nc

p + nd

M
, θp

)
(5.1)

where nc
p is the number of servers that are up and in control of player p, nd is the number

of unavailable (down) servers, and f is a sigmoid function with parameters θp ← (θsl
p , θth

p ):

f(x, θp) = 1
e−θsl

p ·(x−θth
p ) (5.2)

Where θsl and θth control the slope and position of the sigmoid’s inflection point,
respectively. Please note that the value of variables used for computation of the utility
function (nc

p, nd), and therefore, the utility function depends on the time step. However,
in writing, the time step is removed explicitly from the formulation since the time step
can be understood from the context.

Table 5.1. Utility Environments in MTD Game Model
Utility Environment wa wd

0 control / availability 1 1
1 control / confidentiality 1 0
2 disrupt / availability 0 1
3 disrupt / confidentiality 0 0

Reward weight (wp) specifies the goal of each player. As described by [Prakash and
Wellman, 2015], there can be four extreme combinations of this parameter, which are
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summarized in Table 5.1. For example, in “control / availability”, both players gain
reward by having the servers up and in their control. Or in “disrupt / availability”, which
is the most interesting case, the defender gains reward by having the servers up and in its
control. In contrast, the adversary gains reward by bringing the servers down or having
them in its control.

The utility function implicitly defines the defender’s cost of action. In other words,
the cost of reimaging a server comes from not receiving a reward for the time steps when
the server is “down.” In contrast, the adversary’s reward accounts for the cost of probing
(CA), which is a fixed cost that can be avoided by not taking any action.

The reward given to the adversary (rτ
a) and defender (rτ

d) at time τ is defined by:

rτ
d = ud, rτ

a =

ua(nc
a, nd)− CA adversary probed a server at τ

ua(nc
a, nd) adversary did nothing at τ

(5.3)

5.1.1.5 Observations

A key aspect of the model is the players’ uncertainty regarding the state of the servers.
The defender does not know which servers have been compromised by the adversary.
Further, the defender observes a probe only with a fixed probability 1−ν (with probability
ν, the probe is undetected). Consequently, the defender can only estimate the number
of probes against a server and whether a server is compromised. However, the defender
knows the status of all servers, i.e., whether the server is up or down, and if it is down,
how many time steps it requires to be back up again).

The adversary always observes when the defender reimages a compromised server, but
cannot observe reimaging an uncompromised server without probing it. Consequently,
the adversary knows with certainty only which servers are compromised.

Observation of a player p is represented as a vector of tuples oi
p, where oi

p corresponds
to player p’s observation of server i:

op = ⟨o0
p, o1

p, · · · , oM−1
p ⟩ (5.4)

The adversary knows which servers are compromised and knows how many probes it
has initiated on each server.The adversary’s observation of server i is defined as a tuple
oi

a:

∀0≤i<M : oi
a = ⟨ρ̃a, χ, ṽa⟩ (5.5)
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Where ρ̃a is the number of probes launched by the adversary since the last observed
reimaging, χ is the player controlling the server (always known by the adversary), and
ṽa ∈ {up, down} is the observed state of the server.

Unlike the adversary, the defender does not know who controls the servers. Further, if
ν is greater than 0, the defender can only estimate the number of probes. The observation
state of the defender of each server i can be modeled with a tuple oi

d:

∀0≤i<M : oi
d = ⟨ρ̃d, v⟩ (5.6)

where ρ̃d is the number of probes observed since the last reimaging, and v ∈ {up} ∪N0 is
the state of the server (always known by the defender).

5.1.2 Challenges

Solving the MAPOMDP model of Section 5.1.1 with the DO algorithm is not straight-
forward. In the following paragraphs, we discuss the issues faced while solving the
MAPOMDP model and propose approaches for resolving these issues.

5.1.2.1 Partial Observability

For both players, the state is only partially observable. This can pose a significant
challenge for the defender, who does not even know whether a server is compromised
or not. Consider, for example, the defender observing that a particular server has been
probed only a few times: this may mean that the server is safe since it has not been
probed enough times, but it may also mean that the adversary is not probing it because
the server is already compromised. We can try to address this limitation by allowing the
defender’s policy to consider a long history of preceding observations; however, this poses
computational challenges since the size of the policy’s effective state space explodes.

Since partial observability poses a challenge for the defender, we let the defender’s
policy use information from preceding observations. To avoid state-space explosion, we
feed this information into the policy in a compact form. In particular, we extend the
observed state of each server, i.e., the number of observed probes and whether the server
is online, with (a) the amount of time since the last reimaging r (always known by the
defender) and (b) the amount of time since the last observed probe p̃d. So, the actual
state representation of the defender will be:

∀0≤i<M : oi
d = ⟨ρ̃d, v, p̃d, r⟩ (5.7)
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where p̃d is the time since the last observed probe of the server, and r is the time since
the last reimage of the server.

Further, the adversary needs to make sure that the progress of the probes on the
servers is not reset. Therefore, it is important that the adversary knows the amount of
time since the last probe p of servers when deciding which server to probe. Hence, the
observation state of the adversary becomes:

∀0≤i<M : oi
a = ⟨ρ̃a, χ, ṽa, p⟩ (5.8)

5.1.2.2 Complexity of MSNE Computation

In zero-sum games, computation of MSNE can be done in polynomial time, e.g., linear
programming. However, in general-sum games, the problem of finding the MSNE of given
strategy sets of players is PPAD-complete [Shoham and Leyton-Brown, 2008], which
makes the computation of true MSNE infeasible for a game of non-trivial size. Therefore,
we use an ϵ-equilibrium solver, which produces an approximate correct result. One such
solver is the Global Newton solver [Govindan and Wilson, 2003].

5.1.2.3 Equilibrium Selection

Typically, the DO algorithm is used with zero-sum games, where all equilibria of a game
yield the same expected payoffs. However, in general-sum games, multiple equilibria
may exist with significantly different payoffs. The DO algorithm in general-sum games
converges to only one of these equilibria. The exact equilibrium to which the DO
algorithm converges depends on the players’ initial strategy sets and the output of the
best-response oracle. However, in our experiments (Section 5.1.4.3), we show that in our
game, this problem is not significant in practice, i.e., all equilibria yield almost the same
expected payoffs (Figure 5.3) regardless of the initial strategy sets.

5.1.2.4 Model Complexity

Due to the complexity of our MAPOMDP model, computation of best response using
tabular RL approaches (e.g., QL see section 3.1.1.3) is computationally infeasible. For
example, the size of state space for the defender is (2T 3)M since each of ρ̂d, p̂d, and r can
take any value between 0 and T , and v can only take two values. Although we expect
that the values of ρ̂d, p̂d, and r be much smaller than T due to the dynamics of the game,
it is still infeasible to explore each state even once or store a tabular policy in memory
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for a game of non-trivial size on a conventional computer. To address this challenge,
we use computationally feasible approximate best-response oracles to find approximate
best-response strategies instead of best responses. [Lanctot et al., 2017] show that deep
reinforcement learning can be used as an approximate best-response oracle. However,
convergence guarantees are lost when approximate best responses are used instead of
true best responses. Our experiments show that this algorithm converges in only a few
iterations (see Figure 5.1).

5.1.2.5 Short-term Losses vs. Long-term Rewards

For both players, taking an action has a negative short-term impact: for the defender,
reimaging a server results in lower rewards while the server is offline; for the adversary,
probing incurs a cost. While these actions can have positive long-term impact, benefits
may not be experienced until much later: for the defender, a reimaged server remains
offline for a long period of time; for the attacker, many probes may be needed until a
server is finally compromised.

As a result, with typical temporal discount factors, e.g., γ = 0.9, it may be an
optimal policy for a player never to take any action since the short-term negative impact
outweighs the long-term benefit. In light of this, we use higher temporal discount factors,
e.g., γ = 0.99. However, such high values can pose challenges for deep reinforcement
learning since convergence will be much slower and less stable.

5.1.3 Decision Making with Partial Observation

[Prakash and Wellman, 2015] proposed a set of heuristic strategies for each player
(described in Section 5.1.4.1). However, as these strategies are only a subset of the
agents’ strategy sets, their MSNE is not necessarily an MSNE of the complete game.
In Section 4.3 of this dissertation, we discussed how we can create a MARL framework
based on DO to calculate the MSNE of the game.

5.1.4 Evaluation

In this section, we first describe the heuristic strategies of the MTD game (Section 5.1.4.1)
proposed by [Prakash and Wellman, 2015]. These heuristics can be used as our initial
strategies for each player in the DO algorithm (see Section 4.3 and Algorithm 3). Next,
we discuss our implementation of the framework (Section 5.1.4.2). Finally, we present
the numerical results (Section 5.1.4.3).
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5.1.4.1 Baseline Heuristic Strategies

[Prakash and Wellman, 2015] proposed a set of heuristic strategies for both the adversary
and the defender that we will describe.

5.1.4.1.1 Adversary’s Heuristic Strategies

• Uniform-Uncompromised: Adversary launches a probe every PA time steps, always
selecting the target server uniformly at random from the servers under the defender’s
control.

• MaxProbe-Uncompromised: Adversary launches a probe every PA time steps, always
targeting the server under the defender’s control that has been probed the most
since the last reimage (breaking ties uniformly at random).

• Control-Threshold: Adversary launches a probe if the adversary controls less than a
threshold τ fraction of the servers, always targeting the server under the defender’s
control that has been probed the most since the last reimage (breaking ties uniformly
at random).

• No-Op: Adversary never launches a probe.

Table 5.2. Payoff Table for Heuristic and Reinforcement Learning Based Strategies

Adversary
Defender No-OP ControlThreshold PCP Uniform MaxProbe Mixed-Strategy DQL

No-OP 26.89
98.20

26.89
98.20

26.89
98.20

46.03
95.83

26.89
98.20

33.23
97.47

MaxProbe 78.66
47.69

75.67
49.62

36.58
93.01

64.56
67.12

41.99
86.82

45.87
87.84

Uniform 79.08
46.74

70.97
51.58

44.43
89.48

56.83
76.23

57.14
75.21

45.91
88.16

ControlThreshold 63.64
85.98

65.58
85.35

46.38
88.81

59.54
81.32

60.43
80.09

45.91
87.91

Mixed-Strategy DQL 62.78
72.29

58.31
82.45

45.76
91.32

55.31
87.10

44.57
91.32

45.23
92.38

5.1.4.1.2 Defender’s Heuristic Strategies

• Uniform: Defender reimages a server every PD time steps, always selecting a server
that is up uniformly at random.

• MaxProbe: Defender reimages a server every PD time steps, always selecting the
server that has been probed the most (as observed by the defender) since the last
reimage (breaking ties uniformly at random).
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• Probe-Count-or-Period (PCP): Defender reimages a server which has not been
probed in the last P time steps or has been probed more than π times (selecting
uniformly at random if there are multiple such servers).

• Control-Threshold: Defender assumes that all of the observed probes on a server
except the last one were unsuccessful. Then, it calculates the probability of a server
being compromised by the last probe as 1 − e−α·(ρ+1). Finally, if the expected
number of servers in its control is below τ ·M and it has not reimaged any servers in
PD, then it reimages the server with the highest probability of being compromised
(breaking ties uniformly at random). In other words, it reimages a server iff the
last reimage was at least PD time steps ago and E[nc

d] ≤M · τ .

• No-Op: Defender never reimages any servers.

5.1.4.2 Implementation

We implemented the MAPOMDP of Section 5.1.1 as an Open AI Gym [Brockman et al.,
2016] environment. We used Stable-Baselines’ [Hill et al., 2018] Deep Q-Network (DQN)
implementation. Stable-Baselines internally uses TensorFlow [Abadi et al., 2016] as the
neural network framework. For the artificial neural network as our Q approximator, we
used a feed-forward network with two hidden layers of size 32 and tanh as our activation
function. The rest of the parameters are described in Table 5.3. We implemented the
remainder of our framework in Python, including the double oracle algorithm. For the
computation of the mixed-strategy ϵ-equilibrium of a general-sum game, we used the
Gambit-Project’s [McKelvey et al., 2006] Global Newton implementation.

We run the experiments on a computer cluster, where each node has two 14-core 2.4
GHz Intel Xeon CPUs and two NVIDIA P100 GPUs. Each node is capable of running
≈ 85 steps of DQL per second, which results in about 1.5 hours of running time per
each invocation of the best-response oracle, i.e., DQL training for the adversary or
defender. Note that the DQL algorithm is not distributed, so we use only one core of the
CPU and one GPU. It is important to note that, in practice, optimal policies can be
pre-computed and then executed to mitigate attacks when needed. When policies are
executed, inference takes only milliseconds.

5.1.4.3 Numerical Results

For acquiring the following results, our MTD model is always instantiated using baseline
parameters from Table 5.3, unless explicitly specified otherwise.
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Figure 5.1. Evolution of payoff in MTD’s DO iterations. Iteration 0 shows the MSNE payoff
of the heuristics while each DQN training for adversary and defender happens at odd and even
iterations, respectively.

5.1.4.3.1 DQL Convergence and Stability Figure 5.2 shows the learning curve of
the agents for their first iteration of the DO algorithm (Iteration 1 and 2). On average,
the DQL algorithm converges in 3.88 · 105 steps (49.11 minutes) for the adversary and
1.10 ·105 steps (18.13 minutes) for the defender. We can see that over the iterations of the
DO algorithm, the speed of the training decreases. For example, in the first iteration of
adversary training, DQL’s speed is 131.67 steps per second, while for the first iteration of
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Figure 5.2. The learning curve of the players in the first iteration of DO algorithm in MTD.
The blue and red plots show the smoothed episodic reward over the DQL training steps for
adversary and defender, respectively.

defender training, DQL’s speed reduces to 101.12 steps per second. Further, in the fourth
training of the adversary, training speed is decreased furthermore to 52.34 iterations per
second.

Since over the iterations of the DO algorithm, the fraction of DQL strategies in both
players’ MSNE increase (0% vs 51% for the first training), and inference from a DQL
policy, which requires matrix multiplications, is slower than inference from a heuristic
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strategy, which requires only a few operations, we can conclude that DQL policies will
be more dominant over the iterations. This means that DQL policies are performing
better than heuristics over the iterations.

To measure the stability of the DQL algorithm, we extracted the first DQL training
for both players. The DQL algorithm converges to almost the same expected cumulative
reward with a mean and standard deviation of 0.672 and 0.021 for the adversary and
0.878 and 0.011 for the defender. Table 5.2, which we will discuss in detail later, shows
that these policies are significantly better than the heuristics.
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Figure 5.3. Comparison of stability for different configurations in MTD. The blue and red
boxes show the adversary’s and defender’s payoff, respectively. Each box shows the result of
eight runs.

44



Symbol Description Baseline Value
Environment, Agents, Actions

M number of servers 10
∆ number of time steps for which a server is unavailable after reimaging 7
ν probability of the defender not observing a probe 0
αθ knowledge gain of each probe 0.05
CA attack (probe) cost 0.20
θsl

p slope of reward function for player p 5
θth

p steep point threshold of reward function for player p 0.2
wp weighting of reward for having servers up and in control for player p 0 / 1
rτ

p reward of player p in time step τ

Heuristic Strategies
PD period for defender’s periodic strategies 4
PA period for adversary’s periodic strategies 1
π threshold of number of probes on a server for PCP defender 7
τ threshold for adversary’s / defender’s Control-Threshold strategy 0.5 / 0.8

Reinforcement Learning
T length of the game (number of time steps) 1000
γ temporal discount factor 0.99
ϵp exploration fraction 0.2
ϵf final exploration value 0.02
αt learning rate 0.0005
|E| experience replay buffer size 5000
|X| training batch size 32
Ne number of training episodes 500

Table 5.3. List of Symbols and Experimental Values for MTD

5.1.4.3.2 DO Convergence and Stability Figure 5.1 shows the evolution of MSNE
payoff over the iterations of the DO algorithm over three experiments with baseline
values of Table 5.3. In this figure, each training for the adversary and defender happens
at odd and even iterations, respectively, while iteration 0 is the equilibrium of heuristic
policies. The figure shows that the DO algorithm indeed converges with ≈ four training
for each player, i.e., 6 hours of training in total. Comparing multiple runs with the
same configuration shows that the DO algorithm with multiple approximations (e.g.,
approximation with deep networks, approximation on equilibrium computation) is stable
since the average and standard deviation of the MSNE payoff is 47.81 and 1.77 for the
adversary and 88.92 and 1.04 for the defender. For different configurations, the difference
between final expected payoffs of eight DO runs is described in Figure 5.3.

5.1.4.3.3 Equilibrium Selection To analyze the impact of equilibrium selection
on the MSNE payoff of the game, we executed Algorithm 3, but without heuristics as
initial strategy sets. Instead, the initial strategy sets are set to only NoOP adversary and
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NoOP defender. As we can see in Figure 5.3, regardless of the initial strategy sets, the
resulting policies always converge to an MSNE with the same payoffs for both players.
As a result, equilibrium selection is not an issue in practice since we always end with
approximately the same equilibrium.

5.1.4.3.4 Heuristic Strategies Table 5.2 shows the utilities for all combinations of
the heuristic defender and adversary strategies with baseline parameters. The optimal
strategy given only heuristics as players’ strategy sets are PCP for the defender and
control threshold for the adversary. This table also compares these heuristic strategies to
mixed-strategy policies computed using DO and DQL. We can see that it is optimal for
both players to commit to the mixed strategy DQL, since no player can receive more
utility by committing to another policy. In contrast, the opponent still commits to the
DQL policy.

5.1.4.3.5 Resiliency to Under/Over Estimation One interesting observation
of the DQL policies is their resiliency to under/overestimation of the opponent. As a
showcase for when the defender underestimates the adversary, assume a defender who
has trained with CA = 0.2 plays with an adversary who is trained with CA = 0.05. They
received 88.18 and 61.93 utility, respectively. For the defender, this utility is the same as
when it correctly predicts the cost of attack (Figure 5.3).

5.2 Mitigation of False Data Injection in Industrial Control
Systems
The escalating threat of cyber-attacks poses a significant challenge to the security
of critical infrastructure, necessitating comprehensive strategies for prevention and
mitigation. Traditional approaches, focused on securing compromised components, are
often time-consuming and may leave systems vulnerable during the intervening period.
This section introduces a pioneering solution: employing multi-agent reinforcement
learning to formulate resilient control policies. These policies are designed to be promptly
deployed, enabling the immediate mitigation of cyber-attacks and minimizing their
instantaneous impact, even before fully securing compromised components.
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5.2.1 Model

We devised a threat model for a 0-stealthy FDI adversary (p = a) and a model for the
mitigation agent, hereon referred to as a defender (p = d), to reduce the effects of the
attack in different scenarios of different sensor or actuator signals are compromised.

5.2.1.1 System Model

Actuators

du = N (µu, σ2
u)

System: x[t] Sensors

dy = N (µy, σ2
y)

Controller

u[t] y[t]

yd[t]ud[t]

Figure 5.4. A feedback control system. x[t] is the vector process variables, ud[t] is the vector
of actuator signals of the system, and yd[t] is the vector of sensor signals.

A physical/chemical/biochemical process receives a set of inputs, processes them, and
produces a set of outputs. Figure 5.4 shows a simple feedback control system. The state
of the system at a continuous time t can be expressed as a vector of variables x(t). The
dynamics of the process are usually described as differential equations:

ẋ = dx(t)
dt

= f(x(t), u(t)) (5.9)

y(t) = g(x(t), u(t)) (5.10)

where u is the actuator signal of the system, and y is the sensor readings. However, as
we are dealing with discrete-time models, we convert these equations to discrete time:

ẋ = dx(t)
dt
7→ ∆x[t] = x[t + 1]− x[t] (5.11)

eqs. (5.9) and (5.10)⇒

∆x[t] = f(x[t], u[t])

y[t] = g(x[t], u[t])
(5.12)

The controller’s goal is to keep the system’s state at a point x̃. As a result, to measure
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the performance of the controller, we assume a loss function depending on the distance
of the current state of the system to the desired state:

Ld[t] = ∥x[t]− x̃∥ (5.13)

While we are using the Euclidean norm, and we assume only one desired point, any
other loss metric, e.g., absolute distance or distance from two points, is also acceptable.

The state of the system is not necessarily observable, so the controller relies on the
m sensor signals :

yd[t] ∈ Rm (5.14)

To change the state of the system toward the desired point or keep it at that point,
the controller sends n signals to the actuators:

ud[t] ∈ Rn (5.15)

Note that sensor and actuator signals are not necessarily accurate, i.e., each sensor and
actuator signal has normally distributed noise d = N (µ, σ2).

5.2.1.2 Threat Model

By finding vulnerabilities in the ICS communication network or software or by gaining
physical access to ICS devices, an adversary can exploit the ICS to sabotage the physical
process by changing the controller’s sensor readings or actuation commands. Figure 5.5
shows the closed loop feedback control system of Figure 5.4 when an adversary has
compromised the sensor/actuator signals of the controller.

In our threat model, we assume that the adversary has already compromised the set
of actuation signals (Su) and/or the set of sensor signals (Sy) and intends to change
them. We denote the compromised signals as a scenario S̃ ⊆ Su ∪ Sy.

The adversary observes all of the sensor signals of the system. Also, the adversary
knows the scenario of the attack. We denote the observation of adversary at time t as
oa[t]:

oa[t] = ⟨ya[t], S̃⟩ (5.16)

ya[t] = y[t] + dy[t]
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du = N (µu, σ2
u)
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Controller
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u[t] y[t]

yd[t]uC [t]

ya[t]uu
a[t]

uy
a[t]

S̃

Figure 5.5. Controlling a physical system when an adversary is present. ya and yd are the
observations of the adversary and controller, resp. uu

a ∪ uy
a is the action of the adversary. ud is

the action of the controller. S̃ is the set of compromised signals.

where ya is the sensor readings of the system, and dy = N (µ, σ2) is the normal noise of
the sensors. Also, the scenario for the attack (S̃) can be represented as a two-dimensional
vector (S̃ ∈ {0, 1}2), where S̃0 shows whether the sensor signals are compromised, and
S̃1 shows whether actuator signals are compromised.

For each sensor or actuator signal that the adversary has compromised, the adversary
will choose a change fraction between −P and P to alter that signal. The value of the
altered signal will be v · (1 + p) where v is the original value, and p ∈ [−P, P ] is the
signal change chosen by the adversary.

Formally, the action space of the adversary is:

ua[t] = ⟨uy
a[t], uu

a[t]⟩
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uy
a[t] =

[−P, P ]m if Sy ⊂ S̃

[0]n if Sy ̸⊂ S̃

uu
a[t] =

[−P, P ]n if Su ⊂ S̃

[0]n if Su ̸⊂ S̃
(5.17)

where uu
a is the fraction of change to the controller’s actuation signals, and uy

a is the
fraction of change to the controller’s sensor signals.

The goal of the adversary is to deviate the state of the system from the controller’s
desired state. To measure the performance of the adversary based on this model, we
assume a loss function for the adversary based on the loss of the controller:

La[t] = −Ld[t] = ∥x[t]− x̃∥ (5.18)

This is a conservative assumption since we are assuming a worst-case attack (given a
set of compromised components). Again, we should note that our proposed framework
(Section 4.3) would work with other reasonable distance metrics as well.

5.2.1.3 Controller Model

As mentioned above, we assume that there exists an attack detection scheme [Giraldo
et al., 2019,Paridari et al., 2018,Urbina et al., 2016] which tells the controller the scenario
for the attack (S̃), i.e., which set of signals are compromised. Further, the controller
can observe the changed sensor readings of the system. We denote the observation of
controller at time t as od[t]:

od[t] = ⟨yd[t], S̃⟩ (5.19)

yd[t] = (y[t] + dy[t])⊙ (1 + uy
a[t])

where element-wise multiplication of vectors is denoted by ⊙. Again, the scenario for
the attack, i.e., set of compromised signals, can be represented as a two-dimensional
vector (S̃ ∈ {0, 1}2) where S̃0 shows whether the observation signals are compromised,
and S̃1 shows whether actuation signals are compromised. Further, when the adversary
has compromised the actuator signals, the actuators receive these values:

u[t] = (uc[t]⊙ (1 + uu
a[t])) + du[t] (5.20)
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5.2.2 Preliminary Results

This section describes the technical details of how we implemented our framework
(Section 5.2.2.1). Then, to demonstrate the effectiveness of the proposed solution, we test
our framework on two physical systems with known differential equations: a bioreactor
(Section 5.2.2.2.1) and a three coupled tanks system (Section 5.2.2.2.2).

5.2.2.1 Implementation

We converted the dynamics of the physical processes to discrete-time based on Equa-
tion (5.11) and implemented them as OpenAI Gym [Brockman et al., 2016] environments.
We used Stable-Baselines’ DDPG [Hill et al., 2018] as the implementation of our single-
agent learning. Stable-Baselines internally uses TensorFlow [Abadi et al., 2016] as the
neural network framework. We implemented the remainder of our framework in Python,
including the double oracle algorithm and equilibrium computation. In our case, as
we have a zero-sum game, we formulated the problem of finding mixed-strategy Nash
equilibrium as a linear program [Shoham and Leyton-Brown, 2008], and solved it with
the Python library scipy.optimize.linprog.

As the critic (Q) and actor (µ) approximators, we used multilayer-perceptron neural
networks with 4 hidden layers, each having 64 neurons with Exponential Linear Unit (elu)
activation function (since our utilities are negative for the controller) and the parameters
from Table 5.4.

For helping with the convergence of the µ values, we added a +100 “extra” utility to
the controller when the distance of the state of the system to the desired state is less
than ϵ (i.e., when ∥x[t] − x̃∥ ≤ ϵ). This extra utility is also included in the reported
utilities of agents when evaluating them.

5.2.2.2 Test Systems

Here, we describe our two test systems, a bioreactor (Section 5.2.2.2.1) and a three-tanks
system (Section 5.2.2.2.2), and show the effectiveness of our proposed solution. For each
physical process, we present its functionality, describe the dynamics of the process, and
show numerical results from each step of our framework (Chapter 5). All parameters for
training are instantiated based on Table 5.4.

5.2.2.2.1 Bioreactor A bioreactor is a system designed to provide some environ-
mental conditions that are required to carry out a biochemical process. For example, a
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bioreactor might be used for processing pharmaceuticals or food that involves the use of
microorganisms or substances derived from them. Particularly, processes focused on the
growth of organisms (also called biomass) should provide a batch of organisms with food
in order to promote population growth.

For the experiments, we have used the bioreactor system model that was introduced
by [Barreto et al., 2013]. This bioreactor has two inputs, the dilution rate (D) and the
substrate feed (x2f), and two state variables, x1 and x2. Further we assume that the
state of the system is fully observable, i.e., there are sensors for both the biomass and
substrate amount placed in the bioreactor.

This biochemical process can be modeled with:

∆x = x[t + 1]− x[t] =

∆x1 = (µ[t]−D) · x1[t]

∆x2 = D · (x2f − x2[t])− µ[t]
Y

x1[t]

µ[t] = µmax ·
(

x2[t]
km + x2[t] + k1 · x2[t]2

)
(5.21)

The parameters of the bioreactor are presented in Table 5.5. With nominal dilution rate
D = 0.3, and substrate feed x2f = 4.0, the bioreactor has three rest points, one of which
is unstable. These rest points are shown in Table 5.7. We can form a game where the
goal of the controller is to keep the system at the unstable rest point x̃ = ⟨0.995, 1.512⟩,
and the adversary tries to deviate the state of the system from this point by changing
the sensor and/or actuator signals. Further, we assume that the actuators of this system
will accept any positive real number.

In Figure 5.6, we show that DDPG performs very well in finding best-response policies
for our proposed framework since after only 3 · 105 steps, it learns how to keep the state
of the system, i.e., keep the distance of the state of the system less than ϵ from the
desired state, where no attack is present.

Figure 5.7 shows the evolution of mixed strategy equilibrium payoff (UC(σC
∗ , σA

∗ ))
over steps of the double-oracle algorithm. As we can see, the mixed strategy equilibrium
has converged in 12 iterations or less, meaning that the algorithm has already explored
all sets of possible attack/control policies. We run the experiments on a workstation with
20 Core 2.4 GHz Intel®Xeon®CPU and NVIDIA®Titan RTX™GPU. This workstation
is capable of running ≈ 140 steps of DDPG per second, which yields to 2 hours per each
iteration of the double oracle algorithm. Further, the DDPG algorithm is not distributed,
so we only need to use one core of the CPU. This paves the way for multiple DDPGs
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Figure 5.6. Learning curve of the controller in bioreactor system.

to run at the same time. We also need to mention that, set of policies only needs to be
pre-computed. After the attack, these policies are only deployed without any additional
computation.

To show the effectiveness of the framework in mitigating adversarial tampering, we
have compared a non-resilient policy (π0

d) with a resilient policy (σ∗
d) in Figure 5.9. As

you can see, the resilient control policy (mixed-strategy equilibrium of the controller)
is able to keep the state of the system close to the desired state while an adversary is
present.

Furthermore, Table 5.6 shows the payoff table for all the controller and adversary
policies that have been generated by the double oracle algorithm over its iterations. In
each iteration, one new row (controller’s policy), and one new column (adversary’s policy)
is added to the table. This newly added policy is the best response against the opponent’s
previously generated strategies. Each cell (i, j) of the payoff table shows the utility of
the controller when the controller uses the pure approximate strategy found at the i-th
iteration of the double oracle algorithm, and the adversary uses the j-th iteration policy.
Figure 5.7 and Table 5.6 tell the same story: At first, when the controller has not been
trained against any attack (PT0,0), it receives a huge negative utility when it encounters
an attack. In the first iteration (PT1,0), the adversary does not know that the controller
is mitigating the attacks, so it receives a small positive utility. After 12 iterations, the
adversary and controller reach a payoff equilibrium where neither player can improve its
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Figure 5.7. Evolution of the bioreactor system controller’s equilibrium payoff (Ud(σ∗
d, σ∗

a))
over iterations of the double oracle. Simple means when the adversary has compromised only
the actuation signals (i.e., s̃ = Su). In Multi Scenario, Cy = Cu = 0.5.

own utility by finding another policy (Figure 5.7).

5.2.2.2.2 Three Tanks Our second test system is the three-tanks system introduced
by [Combita et al., 2019], which consists of three intercoupled water tanks. The controller
can change the input flow of the first and second tanks. There are sensors measuring the
water level of the first and second tanks. Figure 5.8 shows the schema of this system.

The nonlinear dynamics of this system are obtained using first-principles [Combita
et al., 2019]. The approach of first-principles is based on the use of physical laws to
describe the dynamic evolution of a system. In this specific case, a balance of mass
is used to obtain the differential equations which are the model of the system. The
dynamics of this system are as follows:

S∆L1[t] = Q1[t]− q13[t]

S∆L2[t] = Q2[t] + q32[t]− q20[t]

S∆L3[t] = q13[t]− q32[t]
1

µ13Sn

q13 = sgn[L1[t]− L3[t]]
√

2g|L1[t]− L3[t]|

1
µ32Sn

q32 = sgn[L3[t]− L2[t]]
√

2g|L3[t]− L2[t]|
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Figure 5.8. Schema of the three tanks system. Diagram taken from [Combita et al., 2019].

1
µ20Sn

q20 =
√

2gL2[t] (5.22)

where the parameter values are shown in Table 5.8, and g ≈ 9.80665 m/s2 is the standard
acceleration of gravity. If we fix the nominal intake flows of the system as Q1 = 3.5×10−5

and Q2 = 3.75×10−5 (Table 5.8), we obtain the operation point of the system as L1 = 0.4,
L2 = 0.2, and L3 = 0.3. We assume the controller tries to keep the system stable in this
state x̃ = ⟨0.4, 0.2, 0.3⟩.

The learning curve of the DDPG for the controller in the three-tank system is
presented in Figure 5.10 when no attack is ongoing. Again, to show the effectiveness
of the resilient control policies, we compare three cases in Figure 5.11: 1) the state of
the system when no adversary is present, 2) the state of the system when the controller
chooses a control policy that considered no attack (π0

d) versus the equilibrium strategy of
the adversary (σ∗

a), and (3) state of the system with resilient control policies, i.e., both
the adversary and controller are choose policies based on the mixed-strategy equilibrium
(σ∗

d vs. σ∗
a). We can see that 1) the worst case adversary (σ∗

a) can deviate the state of the
system from the desired point with a norm of 0.126, while an attack resilient controller
only lets deviations with a norm of 0.047. This is a 62% improvement.

The evolution of the controller’s mixed-strategy equilibrium payoff over iterations of
the double oracle algorithm is shown in Figure 5.12.
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5.2.2.3 Discussion

There are major differences between the three-tank system and the bioreactor. First and
the most important one is that in bioreactor, the state of the system is fully observable,
however, in three tanks system, only two out of three state variables are observable. This
reduces the reliability of the DDPG algorithm since Q-values are not a direct function of
observation (Figure 5.10 vs. Figure 5.6).

Second, the action space of the controller in the bioreactor is much bigger than the
action space of the controller in three tanks. This results in (1) the number of steps for
the controller in three tanks to converge to the desired state is much bigger than the
bioreactor’s controller, and (2) control of three tanks will be much smoother without any
jitter compared to the bioreactor (Figure 5.9 vs Figure 5.11).

Also, to determine the number of steps T for each execution of DDPG, we rely on
the TD Error of the Q network. DDPG can be terminated when the TD Error converges
to a sufficiently low value. However, it is a challenge to detect the optimal value for TD
Error, since it depends on the stochastic rules of the environment and the discount factor
(γ). As a result, we decided on a static number of T = 5 · 105 steps. In our experiments
(Figure 5.10 and Figure 5.6), we show that the decided T is, in fact, a good choice.

We also experimented on training different policies for different scenarios, i.e., simple,
instead of combining them in one policy, i.e., multi-scenario. The results show that
generalizing over scenarios decreases the policy’s gained utilities by less than 4%. This
measurement was done by comparing simple MSNE strategies with multi-scenario MSNE
strategies against the opponent’s simple MSNE strategy for different scenarios and
averaging them with the probability of occurrence of scenario (Equation (3.37)).

5.3 Detection of False Information Injection in Navigation
Application
The increasing reliance of drivers on navigation applications has made transportation
networks more susceptible to data manipulation attacks by malicious actors. Adversaries
may exploit vulnerabilities in the data collection or processing of navigation services to
inject false information, thus interfering with the drivers’ route selection. Such attacks
can significantly increase traffic congestion, resulting in a substantial waste of time
and resources, and may even disrupt essential services that rely on road networks. We
introduce a computational framework based on single-agent RL to assess the threat posed
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by such attacks to find worst-case data-injection attacks against transportation networks.
This framework is then used as a BR oracle for the attacker to find the best defense
strategy for the defender. For this purpose, first, we devise an adversarial model with a
threat actor who can manipulate drivers by increasing the travel times that they perceive
on certain roads. Then, we employ hierarchical multi-agent reinforcement learning to
find an approximate optimal adversarial strategy for data manipulation. We demonstrate
the applicability of our approach by simulating attacks on the Sioux Falls, ND, network
topology. The findings here are accepted for publication at The 23rd International
Conference on Autonomous Agents and Multi-Agent Systems [Eghtesad et al., 2023].
Using our HMARL algorithm as a BR attacker oracle for our adaptive solver framework
(see Section 4.3) to devise a FDI detection algorithm.

5.3.1 Model

In this section, we devise and formalize our threat model with respect to a transportation
network environment where the adversarial agent (p = a) injects false traffic information
with a restricted budget with the aim of increasing the total travel time of vehicles
traveling in this network. Further, we devised a detection model for a defender (p = d)
to detect such FDI.

5.3.1.1 Environment

The traffic model is defined by a road network G = (V, E), where V is a set of nodes
representing road intersections, and E is a set of directed edges representing road segments
between the intersections. Each edge e ∈ E is associated with a tuple e = ⟨te, be, ce, pe⟩,
where te is the free flow time of the edge, ce is the capacity of the edge, and be and pe

are the parameters for the edge to calculate actual edge travel time We(ne) given the
congestion of the network, where ne is the number of vehicles currently traveling along
the edge [Transportation Networks for Research Core Team, 2020]. Specifically, we use
the following function for We(ne):

We(n) = te ×
(

1 + be

(
ne

ce

)pe
)

(5.23)

The set of vehicle trips are given with R, where each trip r ∈ R is a tuple ⟨or, dr, sr⟩,
with or ∈ V and dr ∈ V the origin and destination of the trip, respectively, and sr the
number of vehicles traveling between the origin-destination pair ⟨or, dr⟩.
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5.3.1.2 State Transition

For each vehicle trip r ∈ R at each time step t ∈ N, vehicle location lt
r ∈ V ∪ (E × N)

represents the location of vehicle r at the end of time step t, where the location is either
a node in V or a tuple consisting of an edge in E and a number in N, which represents
the number of timesteps left to traverse the edge.

Each vehicle trip begins at its origin; hence l0
r = or. At each timestep t ∈ N, for each

vehicle trip r that lt−1
r ∈ V \{dr}, i.e., the vehicle trip is at a node but has not reached its

destination yet, let ⊘t−1
r = (lt−1

r , e1, v1, e2, v2, . . . , ek, dr) be a shortest path from lt−1
r to

dr considering congested travel times wt as edge weights. Then lt
r = ⟨e1, ⌊wt−1

e ⌉⟩, where
the travel time of edge e is

wt
e = We

 ∑
{r∈R | lt−1

r =⟨e,·⟩}
rs

 . (5.24)

Thus, for a trip r with lt−1
r = ⟨e, n⟩, i.e., the vehicle is traveling along an edge, if n = 1,

that is, the vehicle is one time step from reaching the next intersection, lt
r = v1. Otherwise,

lt
r = ⟨e, n− 1⟩.

5.3.1.3 Attacker Model

At the high level, our attack model involves adversarial perturbations to observed (rather
than actual) travel times along edges e, subject to a perturbation budget constraint
B ∈ N. Let at

e ∈ R denote the adversarial perturbation to the observed travel time over
the edge e. The budget constraint is then modeled as ∥at∥1 ≤ B, where at combines all
perturbations over individual edges into a vector. The observed travel time over an edge
e is then

ŵt
e = wt

e + at
e. (5.25)

It is this observed travel time that is then used by the vehicles to calculate their shortest
paths from their current positions in the traffic network to their respective destinations.
Since we aim to develop a defense that is robust to informational assumptions about
the adversary, we assume that the attacker completely observes the environment at each
time step t, including the structure of the transit network G, all of the trips R, and the
current state of each trip lr.

The attacker’s goal is to maximize the total vehicle travel times, which we formalize
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as the following optimization problem:

max
{a1,a2,...}: ∀t(||at||1=B)

∞∑
t=0

γt ·
∑

{r∈R | ltr ̸=dr}
rs, (5.26)

where γ ∈ (0, 1) is a temporal discount factor.

5.3.1.4 Defender Model

The defender observes the edge travel times ŵt at each time t, and aims to learn a detector
D(ŵt) that takes observed travel times as input, and returns a prediction whether or
not these are due to an adversarial perturbation. If the defender identifies an ongoing
attack at time t, all future perturbations are thereby prevented, i.e., aτ = 0 for all τ ≥ t.
Failure to detect attacks entails direct consequences in terms of increased travel times as
formalized in the attack model in Equation (5.26) (which the defender aims to minimize).
On the other hand, false positives (alerts triggered when no attack is taking place) incur
a fixed cost c.

5.3.2 Challenges

At each timestep of the game, the adversary needs to find the approximately optimal
perturbations to all the edges in a city network G.

The action space for the low-level agent is |E|-dimensional. Given a moderate-
sized city such as Anaheim, CA or Chicago, IL, that has 914 and 2950 road links,
respectively [Transportation Networks for Research Core Team, 2020], it is infeasible for
a Single-Agent RL algorithm to learn the optimal budget allocation strategy.

This requires that the transit network be broken down into components. Then,
an RL agent will be responsible for the edges in the component, observing the infor-
mation pertaining to the component and only finding the optimal perturbations for
that component.

Approaches such as MADDPG will fail in this scenario as the agents will compete
over the budget, making the MDP difficult to learn. This makes the need to devise a
two-level hierarchical multi-agent reinforcement learning algorithm where the purpose
of the high-level agent is to allocate the budget to the components, eliminating the
competition over budget, and the purpose of the low-level agent, which itself is comprised
of component agents, is to further allocate the perturbation budget between the edges in
their component constrained to the allocated budget to the component by the high-level
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agent.

5.3.3 Hierarchical Multi-Agent Reinforcement Learning

To form our HMARL framework, first, we need to divide the transportation system into
sub-components; then, for these components, we devise a MARL framework based on
Multi-Agent Deep Deterministic Policy Gradients (Section 3.3.2). Finally, a high-level
agent based on Deep Deterministic Policy Gradients (Section 3.1.1.4) will coordinate the
component agents. Algorithm 5 shows the training workflow of the HMARL.

5.3.3.1 K-Means Node Clustering

First, these components can be formed by applying a K-Means clustering algorithm,
assuming the distance between two nodes is the shortest path distance given edge weights
we = te. Then, each edge e = uv is assigned to the component of its source node u.
Algorithm 4 shows a pseudocode for the K-means clustering algorithm. Figure 5.14
shows the decomposition of the Sioux Falls, ND transportation network with K-Means
clustering into four components.

Algorithm 4: K-Means Graph Clustering
Result: ce for all e ∈ E; The centroid node for all edges.
Calculate all-pairs shortest path distance du,v : ∀u,v∈V . ;
Select |K| initial nodes as component centers arbitrarily and call them ck ∈ K;
for n_iterations do

cu ← argminv du,v : ∀v∈C .;
ck ← argminck′ argmaxu du,ck′ such that cu = ck.;

end
ce = ⟨uv⟩ ← cu∀e ∈ E

5.3.3.2 High and Low-Level DRL Agents

We assume that the adversarial agent has access to all features of the transportation
network G and all rider information lt

r at all time steps. Thus, it can summarize
the information into features that can be used to train the high and low-level agents.
Figure 5.13 summarizes our HMARL architecture.

5.3.3.2.1 Low-Level Multi-Agent MADDPG When graph G is broken down into
|K| components, the agent supervising component k = Ĝ(V̂k, Êk) ⊂ G(V, E) observes
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a feature vector of ôt
k = ⟨⟨se, ne, ŝe, me, s̃e⟩ : ∀e∈Êk

⟩, where se = ∑{sr|lt
r ∈ V ∧ e ∈ ⊘t

r :
∀r∈R} is the number of vehicles that are currently at a node with an unperturbed shortest
path to the destination passing through e, ŝe = ∑{sr|lt

r ∈ V ∧ e = ⊘t
r(e1) : ∀r∈R} is the

number of such vehicles that will immediately take e, me = ∑{sr · n|lt
r = ⟨e′, n⟩ ∧ e′ = e :

∀r∈R} is the sum of required timesteps for vehicles traveling e to arrive at its endpoint, and
ŝe = ∑{sr|e ∈ ⊘t−1

r : ∀r∈R} is the number of all vehicles taking e as their shortest path
at some timestep assuming the perceived travel times to remain unchanged. The agent
then outputs a vector of perturbations at

k = ⟨at
e|e ∈ Êk⟩ to perturb all the components’

edges. This agent would receive a reward rt
k = ∑{sr|lt

r ∈ Ĝ(V̂kÊk) : ∀r∈R} as the number
of vehicles in its component.

As the low-level agents participate in a cooperative setting with our hierarchical
approach, they do not need to see other agents’ actions to train their critics. The
Q function for each agent can be constructed with Qk(ôt

k, b̂
t

k, at
k) with a Multi-Layer

Perceptron (MLP) such that its output is activated with a Rectified Linear Unit (ReLU)
as the reward for each component is non-negative, i.e., the number of vehicles in the
component. The agent’s action function µk(ôt

k, b̂
t

k) 7→ at
k can be constructed using

an MLP. As the output of the actor function of k-th low-level agent needs to sum
to b̂k to satisfy the budget and allocation constraint, it needs a normalizing function
that can be either a Softmax function or 1-norm normalizer. The final perturbations
can then be drawn by multiplying budget of the component to its action output a =
⟨a1 × b̂1, a2 × b̂2, · · ·ak × b̂k⟩. The training of µk and Qk functions can be performed
according to the MADDPG algorithm (see section 3.3.2).

5.3.3.2.2 High-Level DDPG Agent The high-level agent H observes an aggregated
observation of the components at time t, specifically the number of vehicles in the
component and number of vehicles that are making a decision in that component
ot

H = ⟨⟨∑Êk
e ne,

∑Êk
e ŝe⟩ : ∀k∈K⟩, and outputs b̂ ∈ [0, B]|K| such that ∥b̂t

∥1 = B the
portion of the budget allocated to each component. The high-level agent is rewarded by
the total number of the vehicles in the network rt

H = ∑
{r∈R|ltr ̸=dr} sr.

Similar to the low-level agent actors, the output of the high-level actor is normalized
with either Softmax or 1-norm and then multiplied by the total budget B to allocate each
budget to the component. The training of the high level µH and QH can be performed
according to the DDPG algorithm (Section 3.1.1.4).
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5.3.4 Preliminary Results

We simulated the framework using benchmark data from [Transportation Networks for
Research Core Team, 2020] and evaluated the effectiveness of HMARL for finding an
optimal strategy for false information injection on the Sioux Falls, ND testbed.

5.3.4.1 Experimental Setup

To make the environment non-deterministic, we randomly increased or decreased rs by
5% at each training episode’s beginning. We simulate the environment by following a
vehicle-based simulation based on the state transition rules of Section 5.3.1.2.

5.3.4.1.1 Hardware and Software Stack The experiments, including the neural
network operations, are done on an Apple MacBook Pro 2021 with an M1 Pro SoC with
eight processing cores and 16GB of RAM. None of the experiments, including the neural
operations, have been done on the Metal Performance Shaders. The simulation of the
environment has been implemented using Python. For neural network operations, we
used PyTorch [Paszke et al., 2019]. We used NumPy [Harris et al., 2020] as our scientific
computing library.

5.3.4.1.2 Seeds and Hyperparameters To make sure that the results presented
in this article are reproducible, we initialized the random seeds of Numpy, PyTorch, and
Python to zero. The hyperparameters used for the simulation and the training of high
and low-level agents are presented in Table 5.9 and the neural network architectures are
presented in Table 5.10.

5.3.4.2 Heuristics

We used a Greedy heuristic as our baseline strategy. In the greedy approach, the
adversarial agent counts the number of vehicles se passing through each edge e as their
unperturbed shortest path to their destination. Then its applied perturbation will be

a = ⟨se : ∀e ∈ E⟩∑
e∈E se

×B.

When running the ablation study (see Figure 5.15) and testing the high-level and
low-level agents separately, we replaced the high-level with a proportional allocation,
meaning that each component agent gets a proportion of the budget relative to the
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number of vehicles making a decision in that component. Further, the low-level agent
can be replaced with a local greedy that perturbs the edges in its component relative to
the number of vehicles passing through the edges:

ak = ⟨se : ∀e ∈ Ek⟩∑
e∈E se

× b̂k.

5.3.4.3 Numerical Evaluation

After the initialization of the environment, as the HMARL is off-policy, it can draw
experiences of states, actions, next states, and rewards from the environment by taking
either random actions or by taking OU noise added to actions outputted by the low-level
agent. Using these experiences, all actors and critics can be updated simultaneously.

When agents are trained simultaneously, the low-level agent should have lower learning
rates as it needs the high-level agent to learn its behavior but should account for more
steps in the future with a higher discount factor γ.

Figure 5.15 shows the result of the training with an ablation study on the Sioux Falls,
ND transportation network [Transportation Networks for Research Core Team, 2020].
This network has 24 nodes and 76 edge links. We ran HMARL with different attack
budgets. As expected, the HMARL performs better by 10-50% depending on the budget,
making it a viable solution to the scalability of Deep Reinforcement Algorithms.
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Algorithm 5: Hierarchical Multi-Agent Reinforcement Learning
Require: A road network graph G = (V, E); Set of Riders R;;
Initialize environment env;
Initialize Replay Buffer E.;
Run K-Means Clustering to acquire components;
s← env.reset();
for step ⇒ total steps do

b̂← µH(ŝ);
a← ⊙µk(b̂, s) +N ;
Normalize a;
s′, r ← env.step(a);
E ← E ∪ ⟨s, s′, a, r⟩;
s← s′;
if env.done() then

s← env.reset();
end
Sample Ê ∼ E;
Update QH , µH , Qk, µk∀k∈K with Ê;

end
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Symbol Description Baseline Value
Environment

u[t] vector of actuation signals at time
t

n dimension of actuation signals 2
y[t] vector of sensor signals at time t
m dimension of sensor signals 2
P Maximum change ratio to each

compromised signal.
0.3

µ noise mean 0.03
σ2 variance of noise 0.07
x state of the system
x̃ desired state of the system

Cu, Cy probability of compromisation of
actuation/sensor signals, resp

0.5

Sy, Su set of sensor and actuator signals,
resp.

S̃ set of compromised signals (sce-
nario)

ϵ closeness condition 0.01
LC [t], LA[t] Loss of controller and adversary

at time t, resp
Agents

uy
a[t], uu

a[t] the amount of change to observa-
tion/actuation, resp.

yd[t], ud[t] controller’s sensor reading/actua-
tion signal at time t

Ud[t], Ud[t] utility of attacker and controller
at time t, resp.

πA, πC pure policy of adversary and con-
troller, resp.

Πa, Πd set of all pure policies available to
the adversary and controller, resp.

σa, σd mixed strategy of adversary and
controller, resp.

π∗(σ) best response pure policy to strat-
egy σ

PT payoff table (refered to as a ma-
trix)

Reinforcement Learning
T total number of steps of DDPG

training
5 · 105

Tepoch Maximum number of steps for
each epoch

200

γ discount factor 0.90
αµ learning rate of actor 10−4

αQ learning rate of critic 10−3

e probability of random action in
each step

0.1

|R| size of replay buffer 5 · 104

|X| neural network fitting batch size 128
θQ, θµ parameters of the Q and µ func-

tions, resp

Table 5.4. List of Symbols and Experimental Values for the Resilient Control Framework.
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Symbol Unit Description Value
Parameters

µmax hr−1 0.53
km g/liter 0.12
k1 liter/g 0.4545
Y ratio ratio of the change in the popula-

tion mass and the change in the
substrate mass

0.4

Nominal Input / Output
D g/s substrate feed (or food income) 0.3
x2f g/s output biomass flow 4

State Variables
x1 g amount of biomass
x2 g amount of substrate

Table 5.5. List of Parameters for the Bioreactor

Attacker
Policy Generated in Iteration

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
ef

en
de

r
Po

lic
y

G
en

er
at

ed
in

It
er

at
io

n

0 -1062.5278 -60.7144 -133.2385 -135.3946 -223.8062 -667.9065 -106.8297 -80.9442 -115.3957 -116.9765 -83.9764 -122.2647 -40.4468 -103.4953 -169.0730 -130.0481
1 -37.2163 -754.5798 -1893.1854 -1956.2957 -37.5236 -48.8347 -81.3956 -81.6147 -1790.0800 -1123.2222 -159.1248 -1477.9965 -890.1891 -1143.9990 -1706.2990 -67.2577
2 -367.1605 14.0463 -48.4147 -37.5867 -1000.5052 -1263.1415 -38.6504 15.6583 -61.5425 -34.8168 -134.8090 -34.4913 -90.7459 31.6843 -30.4202 -215.4627
3 -413.8956 89.0763 86.2773 84.4174 -790.2409 -909.6236 -87.1434 -115.0079 89.3830 90.7394 67.0225 -69.6258 -52.9248 -35.1016 78.6845 -231.5823
4 -1926.4229 -20.7814 -17.9397 -14.4014 -1904.1029 -1908.2865 -96.1622 -120.1073 -43.7463 -20.2101 -29.1217 -22.7784 2.4853 4.2434 -27.6401 -235.5610
5 -68.0506 -129.8021 -159.5376 -155.0538 3.8488 -52.8699 -180.1517 -187.3842 -157.3390 -139.1703 -78.9755 -144.7794 -105.2223 -146.3316 -154.7047 -68.3322
6 -107.1579 -1628.9873 -1656.9748 -2038.9951 12.4141 -54.9482 -2470.8423 -2325.1877 -2081.0609 -2252.1969 -1715.3721 -2035.9816 -1431.1542 -1650.1598 -1749.4343 -1821.2800
7 -95.1620 -1146.7708 -2167.7975 -2382.9580 90.2800 -0.9087 -1280.4411 -1244.6693 -1602.8200 -2380.2582 -1635.2055 -2377.3544 -2377.8033 -2132.5308 -1818.9371 -1753.0500
8 -91.2814 -1736.0559 -2368.7374 -2147.3210 12.1659 -50.6632 -1907.0340 -1242.4375 -1529.3686 -2154.1480 -1976.4891 -2366.4138 -2129.1564 -2092.4342 -1810.7624 -1487.4191
9 -76.5098 -189.7340 -231.4714 -226.2535 91.2756 -23.0871 -109.9416 -76.4330 -226.8518 -220.7357 -200.5393 -228.7897 -97.5295 -224.1690 -232.1124 -60.0890
10 -120.5652 -121.5800 -233.1025 -212.2048 89.4213 -35.5731 -184.2321 -142.8168 -238.3319 -158.6177 -126.6337 -198.3248 -102.5119 -205.6803 -218.7598 -43.2830
11 -79.3808 -178.3255 -189.1195 -191.3982 52.0420 15.1543 -116.8980 -83.8733 -195.9938 -198.1456 -197.3299 -182.4141 -137.2828 -202.9991 -187.9795 -68.5034
12 -69.2062 -138.9754 -380.4202 -209.2603 87.0969 19.3129 -115.8547 -89.7844 -200.4015 -329.7046 -506.6450 -190.2273 -673.3889 -192.2152 -213.4839 -86.5613
13 -112.7862 -225.4718 -1325.4476 -653.5512 -35.8491 -47.5547 -2197.2286 -196.0760 -1081.9079 -235.6581 -235.2000 -876.6508 -291.5608 -202.3613 -430.4403 -286.0190
14 -57.6284 -126.6927 -198.8452 -195.9530 42.6847 -41.0893 -121.5689 -61.9094 -195.0703 -196.3210 -191.0047 -279.9479 -94.7251 -168.4408 -269.1706 -72.3701
15 -64.1027 -189.0744 -161.5968 -154.8786 80.4412 25.1787 -179.2542 -111.9868 -154.9419 -167.8632 -199.7539 -155.9191 -329.3882 -147.8971 -150.6461 -76.2398
16 -250.4163 -1806.4048 -2179.6851 -1493.0887 -274.1134 -489.8190 -579.3843 -1248.6494 -1499.9731 -1589.2914 -1660.9171 -2005.2848 -1809.5406 -1136.3496 -1264.5406 -1357.2924

Table 5.6. Payoff Table of Bioreactor’s Defender

x∗
1 x∗

2
0 4 Stable

0.995103 1.512243 Unstable
1.530163 0.174593 Stable

Table 5.7. Rest points of the bioreactor with differential equations of Equation (5.21) and
parameters of Table 5.5.
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Figure 5.9. Comparison of attacks and resilient control policies on the state of the bioreactor.
No Attack refers to the base controller policy (π0

d) when no attacker is present. No Defense is
the same controller policy against the mixed strategy equilibrium of the adversary (σ∗

a). With
Defense shows the state of the system when both adversary and controller choose policies based
on the mixed strategy equilibrium (σ∗

d vs. σ∗
a). These measurements were performed in a noisy

environment with scenario S̃ = {Sy, Su}.

67



Symbol Unit Description Value
Parameters

S m2 Tank cross section area 0.0154
Sn m2 Pipe cross section area 5× 10−5

µ13 ratio Outflow coefficient 0.5
µ32 ratio Outflow coefficient 0.5
µ20 ratio Outflow coefficient 0.6

maxQi
| i ∈ {1, 2} m3/s Maximum flow rate 1.5× 10−4

maxLj
| j ∈ {1, 2, 3} m Maximum tank level 0.62

Nominal Input / Output
Q1 m3/s Tank 1 input flow 3.5× 10−5

Q2 m3/s Tank 2 output flow 3.75× 10−5

State Variables
Li| i ∈ {1, 2, 3} m Tank level

Table 5.8. List of Parameters for the Three Tanks System
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Figure 5.10. Learning curve of the controller in three tanks system.
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Figure 5.11. Comparison of non-resilient and resilient control policies based on the state
of the three tanks. No Attack refers to the base controller policy (π0

d) when the controller
was trained, not to expect an attack. No Defense is the same controller policy against the
mixed-strategy equilibrium of the adversary (σ∗

a). With Defense shows the state of the system
when both adversary and controller choose policies based on the mixed strategy equilibrium
(σ∗

d vs. σ∗
a) with scenario S̃ = {Sy, Su}.
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Figure 5.12. Evolution of the controller’s equilibrium payoff (Ud(σ∗
d, σ∗

a)) over iterations of the
double oracle algorithm in three tanks system. In multi scenario, Cy = Cu = 0.5. For simple
scenario: S̃ = Su
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Figure 5.13. Hierarchical Multi-Agent Deep Reinforcement Learning Architecture. µH

and QH are the high-level agent’s actor and critic function approximators, respectively. µk

and Qk are the actor and critic function approximators of low-level agent k, respectively.
a = ⟨a1 × b̂1, a2 × b̂2, · · ·ak × b̂k⟩ is the perturbations of all edges of the transit graph G where
ak is the perturbations of edges in component k. ok and b̂k are the observation of the k-th
agent from its component and the proportion of budget allocated to it, respectively. The
Normalize layer can be constructed using the Softmax function or the 1-norm normalization of
ReLU-activated actor outputs.
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Sioux Falls, ND Transportation Network

Low Level Components

High Level Agent

Agent 4

Agent 3

Agent 1

Agent 2

Agent 4

Agent 3

Agent 1

Agent 2

Figure 5.14. Decomposition of Sioux Falls, ND transportation network into four components,
where one low-level agent is responsible for adding perturbation to edges in each component,
and one high-level agent is responsible for allocating budget B to each low-level agent. Edge
width represents the density of vehicles moving over the edge without any attacker perturbation
added.
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Figure 5.15. Ablation study of HMARL on the Sioux Falls network. “No Attack” pertains
to no attack on the network. “Greedy Heuristic” is a network greedy (see Section 5.3.4.2)
attack. “DDPG” applies the general-purpose DDPG algorithm network-wide. In the remaining
columns, the network is divided into four components. In “Decomposed Heuristic,” the low-
level actors are low-level greedy agents, with the high-level being a proportional allocation to
the number of vehicles in each component. In “Ablation | Low Level,” the high-level agent
is the proportional allocation heuristic, while its low-level is the MADDPG approach. In
“Ablation | High Level,” the low-level is the greedy heuristic, while the high-level is a DDPG
allocator RL agent. “HMARL” is our HMARL approach. Here, the low-level MADDPG and
high-level DDPG components have been trained simultaneously.
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Table 5.9. List of Hyperparameters for the HMARL
Hyperparameter Value

Environment
Training Horizon 400
Evaluation Horizon 50
|K| Number of Components 4
Total Training Steps 200,000
Randomizing Factor of Number of Vehicles 0.05

Common
τH , τk target network transfer rate 0.001
Training Batch Size 64
Experience Replay Buffer Size 50,000

Stand Alone High Level
µk Learning Rate 0.00005
Qk Learning Rate 0.01
γH 0.99
τH 0.001
Noise Decay Steps 10,000

Stand Alone Low Level
µk Learning Rate 0.00005
Qk Learning Rate 0.01
γk 0.99
Noise Decay Steps 30,000

Hierarchical
Low-Level

µk Learning Rate 0.00005
Qk Learning Rate 0.01
γk 0.9
Noise Decay Steps 10,000

High-Level
µH Learning Rate 0.00001
QH Learning Rate 0.001
γH 0.99
τH 0.001
Noise Decay Steps 30,000

Standalone DDPG
µ Learning Rate 0.00001
Q Learning Rate 0.001
γ 0.99
Noise Decay Steps 30,000
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Table 5.10. Neural Network Architecture for HMARL
Hyperparameter Value

High-Level
Actor µH

Number of hidden layers 2
Sizes of layers [256, 128]
Activation function ReLU
Optimizer Adam

Critic QH

Number of hidden layers 2
Sizes of hidden layers [128, 128]
Activation function ReLU
Optimizer Adam

Low-Level
Actor µk

Number of hidden layers 2
Sizes of hidden layers [512, 512]
Activation function [ReLU, ReLU, Sigmoid]
Optimizer Adam

Critic Qk

Number of hidden layers 2
Sizes of hidden layers [128, 128]
Activation function ReLU
Optimizer Adam
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Chapter 6 |
Research Plan and Expected Con-
tributions

6.1 Key Tasks, Activities, and Schedule
The results of the prevention of security threats have already been published as a
full conference paper at the 2020 Conference on Decision and Game Theory for Secu-
rity [Eghtesad et al., 2020]. For the detection mechanism, our HMARL framework has
been accepted for publication at the The 23rd International Conference on Autonomous
Agents and Multi-Agent Systems [Eghtesad et al., 2023]. The tasks and timeline remaining
for the completion of the dissertation are as follows:

Spring 2024 Finalize the threat and defense model of FDI detection in navigation applications.

Spring 2024 Adjust our HMARL framework for the new threat model.

Summer 2024 Development of the PSRO algorithm for detection of FDI in transportation networks
assuming a black-box model where neither the adversary nor the defender has
access to the opponent’s strategies and only observe its consequences.

Fall 2024 Extend and develop the model of ICS with larger, more realistic ICS for the
mitigation tasks.

6.2 Expected Contributions of the Research
The dissertation presents a multifaceted contribution to cybersecurity, addressing the
prevention, mitigation, and detection of cyber threats. In the realm of prevention, a
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Multi-Agent Partially-Observable Markov Decision Process is introduced for Moving
Target Defense, based on an adversarial two-player general-sum game. The quest for
adaptive Moving Target Defense policies is cast as the problem of finding Mixed-Strategy
Nash Equilibrium using the Policy Space Response Oracles algorithm, which is further
streamlined through a compact memory representation for defender and adversary
agents in a partially observable environment. Computational efficiency is achieved by
employing Deep Q-Learning algorithm, yielding optimal Moving Target Defense policies,
as evidenced by numerical evaluations across diverse game parameters.

The mitigation efforts focus on a comprehensive threat model for countering False
Data Injection attacks within Industrial Control System. A zero-sum extensive-form
game models interactions between the adversary, the controller, and the environment,
with Deep Deterministic Policy Gradients defining optimization algorithm. The resultant
attack-resilient control policies are derived through Multi-Agent Reinforcement Learning
based on the Policy Space Response Oracles algorithm. Real-world applicability is
substantiated through extensive experiments in different systems, showcasing the efficacy
of the proposed algorithm.

In the realm of detection, a threat model for False Data Injection attacks in nav-
igation applications is outlined. A Hierarchical Multi-Agent Reinforcement Learning
cooperative framework was introduced as an optimal strategy for perpetrating attacks in
transportation networks. Hierarchical Multi-Agent Reinforcement Learning demonstrates
superiority over baseline Independant Reinforcement Learning algorithms and heuristics
in Sioux Falls, ND, through an ablation study. Further, the Markov Decision Process
model is extended to a Multi-Agent Partially-Observable Markov Decision Process with
a detection model. This model is solved through a Multi-Agent Reinforcement Learning
approach based on Policy Space Response Oracles, where the attack oracle is based
on Hierarchical Multi-Agent Reinforcement Learning and the defense oracle is Deep
Q-Learning for detection agents. Our framework has proven effective in evaluations on
the Sioux Falls, ND transportation network.

6.2.1 Specific Contributions

The key contributions of the finalized dissertation are expected as follows:

Prevention We developed a framework to solve the prevention of cyber-threats using Moving
Target Defense scheme:

(a) Game Formulation: A two-player general-sum game models interactions
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between adversaries and defenders.

(b) Framework Development: The two-player general-sum game is relaxed
into a novel Multi-Agent Partially-Observable Markov Decision Process for
Moving Target Defense.

(c) Optimization Problem: Finding adaptive Moving Target Defense policies
is framed as discovering the Mixed-Strategy Nash Equilibrium.

(d) Memory Representation: Compact memory representations for defender
and adversary agents enhance computational efficiency.

(e) Computational Approach: An approach using Deep Q-Learning and the
Policy Space Response Oracles algorithm is proposed for optimal Moving
Target Defense policy discovery.

(f) Numerical Evaluation: Viability is demonstrated through numerical evalu-
ations considering various game parameters.

Mitigation We designed a threat model and developed a framework to mitigate False Data
Injection in Industrial Control System:

(a) Threat Model Design: A comprehensive threat model is established for
mitigating False Data Injection attacks in Industrial Control System.

(b) Game Modeling: Interactions among adversaries, controllers, and the envi-
ronment are modeled as a zero-sum extensive-form game which later is relaxed
into an Multi-Agent Partially-Observable Markov Decision Process.

(c) Optimization Strategy: An optimization strategy for adversarial and
control policies is defined using Deep Deterministic Policy Gradients.

(d) Algorithm Validation: The effectiveness of the proposed algorithm is
substantiated through extensive experiments in different systems, serving as
case studies.

Detection We defined a threat model of False Data Injection in navigation applications and
developed a HMARL competitive and cooperative framework to find the optimal
strategy for detecting attacks in transportation networks:

(a) Threat Model Definition: A refined threat model for False Data Injection
attacks in navigation applications is outlined.
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(b) Competitive Framework: A Hierarchical Multi-Agent Reinforcement Learn-
ing cooperative framework is developed for optimal attack perpetration in
transportation networks, which is later used to develop a detection algorithm.

(c) Algorithm Operation: The Hierarchical Multi-Agent Reinforcement Learn-
ing algorithm operates at two levels, showcasing superiority over baseline Deep
Reinforcement Learning algorithms through an ablation study.

(d) Model Extension: The model is extended to a Multi-Agent Partially-
Observable Markov Decision Process with a detection model.

(e) Detection Approach: A Multi-Agent Reinforcement Learning approach
based on Hierarchical Multi-Agent Reinforcement Learning attack oracles and
Deep Q-Learning oracles for detection agents is proposed and evaluated on
the Sioux Falls, ND transportation network.
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