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Moving Target Defense I

Preventing reconnaissance using Moving Target
Defense (MTD)

MTD is a proactive defense

Changing the configuration of assets randomly.
e.g., IP addresses, software deployments

Increases the uncertainty of the attacks.

Putting the adversary in an infinite loop of
exploration
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Moving Target Defense II

MTD configurations should be deployed continuously.

Currently, sysadmins manually decide on when and where MTD configurations to be deployed based
on their experience.

Deployment is time-consuming

• Constraint on deployment locations.

• Physical connectivity cannot be changed.

• Resources are limited

The trade-off between security and efficiency

• Most Secure: Total Randomization of configurations

• Most Efficient: No change of configuration.
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Mitigation of 0-stealthy Attacks

0-stealthy against Physical Control Software

• Insider threats are undetectable by network intrusion
systems

• Change the actuation and observation signal

• Change is in the operational domain

• Make the system deviate from its nominal operations. e.g.,
StuxNet Virus

• These systems can not be easily patched.
• These systems can not be easily restarted.

Mitigating the effect of worst-case attack by adjusting the
actuator signals.

Actuators

du = N (µu, σ
2
u)

System: x[t] Sensors

dy = N (µy, σ
2
y)

Controller

u[t] y[t]

yd[t]ud[t]

From Associated Press
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Domain Specific Detection

Relying on network and host intrusion detection is not
enough.

Misinformation in Transportation Networks

• Changing Road Signs

• False Data Injection in Crowdsourced Information (Google Maps)

• Manipulate Traffic Signals

• Detection must happen in the application domain.

• Must detect system deviations from its nominal
operating conditions.

• Taking operational requirements into account.

From [Schoon, 2020]
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Reinforcement Learning for Decision Making Under Uncertainty

Reinforcement Learning for sequential decision making under uncertainty

• In prevention, RL can determine timing of MTD configurations considering uncertain threat
scenarios.

• In detection, RL can make decisions to maximize detection accuracy under uncertain system
conditions.

• In mitigation, RL can be employed to minimize potential damage by selecting appropriate
actuation signals in uncertain environments.
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Reinforcement Learning I

Reinforcement Learning (RL) is a Sequential Decision-Making Algorithm under uncertainty

• Relies on trial-and-error and dynamic programming to achieve Optimal Sequential
Decisions

• Learns from experiences to maximize expected Reward

Environment AttackerDefender
at

ot

rt
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Reinforcement Learning II
Reinforcement Learning Optimization Problem

Policy or Strategy Function

π (ot) 7→ at

Optimization Problem

max E

[ ∞∑
τ=0

γτ · rt+τ

∣∣∣∣∣ π
]

Environment AttackerDefender
at

ot

rt

In English Please?

The policy function gets the current observation and
suggests an action that maximizes “discounted future
rewards”

Discount Factor γ

γ ∈ [0, 1) prioritizes rewards received in the current
time step over future rewards.

• γ = 0: Only care about the current reward

• γ = 1: All future rewards are equal
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Research Questions

RQ 1 How to model the interactions between the attacker and defender within the
application environment?

RQ 2 What Reinforcement Learning algorithm should we use or develop?

RQ 3 How can we learn if the attacker is adaptive and responds to the defender?

Environment AttackerDefender
at

ot

rt

π
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Research Approach
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The Interactions

For each of the Prevention, Detection, and Mitigation scenarios, we need to formalize
the interactions between the attacker, environment, and the defender.
• What is the environment model?
• What is the threat model?
• What is the defender model?

Environment AttackerDefender
at

ot

rt
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Reinforcement Learning Algorithm

Deep-Q-Learning
• Deterministic Policy

• Discrete Action

• Continuous or Discrete Observation

Deep Deterministic Policy Gradients

• Deterministic Policy

• Continuous Action

• Continuous or Discrete Observation

Environment AttackerDefender
at

ot

rt
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But, what if the attacker is adaptive?

• An adaptive attacker is not static. It has its own policy and adapts it to the defender

• The defender must also adapt to the attacker

Environment AttackerDefender

envd[σa]

enva[σd]

at
d

ot
d

ot
a

at
a

σ∗
d

σ∗
a

What is that σ?

That is a stochastic policy, i.e., a
probability distribution over
deterministic policies π.
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Two Player Security Game

• The interactions and objectives of players is expressed as a Multi-Agent Partially
Observable Markov Decision Process (MAPOMDP).

• MAPOMDP is a relaxed Extensive-Form Game.

MAPOMDP

〈P,S, {Ap}p∈P, T , {Rp}p∈P, {Op}p∈P〉

What are these symbols?

P set of players

S set of states

Ap action space of player p

T (s, a) state transitions rules

Rp(s, a) rewarding rule for player p

Op observation rule for player p

Environment AttackerDefender

envd[σa]

enva[σd]

at
d

ot
d

ot
a

at
a

σ∗
d

σ∗
a
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Finding Equilibrium of a Security Game

• We defined a two-player game between the attacker and the defender as a MAPOMDP.

• We assume both players are rational. They always choose a best-response strategy.

• This is equivalent to finding the Nash Equilibrium of the security game.

What is Mixed-Strategy Nash Equilibrium?

All players are playing with their best-response to all opponents’ strategies, i.e., neither player can increase their
expected utility without having their opponents change their strategy.

Problem

Enumerating all the different strategies to find the Nash Equilibrium is infeasible.

Reinforcement Learning as Best-Response Oracle

Reinforcement Learning algorithms can be used to find an approximate Best-Response.
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Policy Space Response Oracles

Π0start Πt π∗,t+1
p (σ∗,t−p)

Πt+1
p ← Πt

p ∪ {π∗,t+1
p }

σ∗,t
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Environment AttackerDefender
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at
d

ot
d

ot
a
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a

σ∗
d

σ∗
a

PSRO algorithm [Lanctot et al., 2017] based on Double Oracles
[McMahan et al., 2003].
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Attack Prevention through Moving Target Defense [Eghtesad et al., 2020]
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The Moving Target Defense Game I
Overview

The Game [Prakash and Wellman, 2015]

An Attacker and a Defender compete over a set of servers.

• Adversary probes a server

• Adversary compromises the server with some probability, or

• Increases the chance of compromising that server in the future.

• Defender reimages a server.

• Takes the server down for fixed time steps.

• Resets the adversary’s progress on that server

• Takes back the control of the server
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The Moving Target Defense Game II
States, Objectives, and Rewards

State per each Server

• Number of Probes

• Control

• Up or Time to up

Rewards

Each player is rewarded based on the portion of servers that are in
control or down.
• Implicit defender cost, i.e., not gaining reward when server is down

• Explicit attacker reward penalty for probing.
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The Moving Target Defense Game III
Observations

Attacker Knowledge

• Can only estimate when a server is compromised.

• Learns whether a server is up or down by probing.

• Knows who controls a server.

• Knows when a compromised server is reimaged.

Defender Knowledge

• Knows Which servers are down.

• Observes a probe with some probability.

• Unaware of a server being compromised.
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Imperfect Observation

The state is only partially observable

The defender have observed only a few probes recently

• Is the server already compromised? The attacker is not probing it

• Is the server not compromised? There are few probes

The attacker is unaware of an unprobed server

• Has its progress been reset by reimaging?

• The previous probes are still in place?

Including History

Improve RL with compact history representation
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Short-term Losses vs. Long-term Rewards

Short Term Loss

• Defender: Reimaging a server results in lower rewards while the server is offline

• Attacker: Probing incurs a cost

Long-term Gains

• Defender: A reimaged server will return the control to the defender

• Attacker: Continuous probes will compromise a server

The value of discount factor γ is important
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Deep-Q-Learning for MTD

What Reinforcement Learning Algorithm to Choose?

• At each step, both agents decide on a server to
probe or reimage

• Action space is discrete

• Observation features are well-defined

• Feed Forward Neural Network operates as a feature
extractor

• Deep-Q-Learning algorithm can be used as the
best-response oracle for both agents

• Policy Space Response Oracles will find the Nash
Equilibrium of the MTD game

Figure 1: Defender NN Architecture
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Evaluation
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Mitigation of False Data Injection in Industrial Control Systems
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Control System In Danger I

System Transitions

Differential equations dictate the transition rules

Attacker has Compromised Signals

• Will change sensor or actuator signals by a
percentage to avoid detection

Presence of a Detector

A detector notifies the controller
[Giraldo et al., 2019, Paridari et al., 2018, Urbina et al., 2016]

Actuators

du = N (µu, σ
2
u)

System: x[t] Sensors

dy = N (µy, σ
2
y)

Controller

u[t] y[t]

yd[t]ud[t]

From Associated Press
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Control System In Danger II
Observations, Actions, and Objectives

Attacker

• Observes sensor and actuator values

• Perturbs sensor and actuator values

• Deviates the system from nominal point

Defender

• Observes perturbed sensor signals

• Observes detection result

• Decides on control signals

• Minimize worst-cast deviations of nominal point

Actuators

du = N (µu, σ
2
u)

System: x[t] Sensors

dy = N (µy, σ
2
y)

Attack Detection

Controller

Adversary

u[t] y[t]

yd[t]uC[t]

ya[t]uu
a[t]

uy
a[t]

S̃

• Attacker gains reward by distance of system
state to its nominal point ra = ∥x − x0∥

• Defender gains reward by the negative of the
distance rd = −∥x − x0∥
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Resilient Control through Reinforcement Learning

What Reinforcement Learning Algorithm to Choose?

• Action space is continuous

• Observation features are well-defined

• Feed Forward Neural Network operates as a feature extractor

• Deep Deterministic Policy Gradients (DDPG) can be used as the best-response oracle for both
agents

• Policy Space Response Oracles will find the Nash Equilibrium, thus the resilient control policy
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Evaluation I
Benchmark Systems

Figure 5: Schema of the three tanks system
Diagram from [Combita et al., 2019] Figure 6: Schema of a bioreactor

Diagram from [Rahmatnejad et al., 2023]
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Evaluations II
Bioreactor

Observation attacks cannot be tackled. There is no correlation between observation and reward.
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Evaluations II
Three Tanks
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Detection of False Data Injection in Navigation Applications [Eghtesad et al., 2023]
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Attack on Navigation Applications I

Transportation Model

• A bi-directional graph defines the transportation network’s
roads and intersections
[Transportation Networks for Research Core Team, 2020]

• Each road has a given travel time: Congestion Model

• The more vehicles on a given road, the higher the travel time

• At each intersection, drivers look at the shortest path to
destination by the navigation application

Threat Model

• Attacker has a budget to perturb perceived travel times

• Attacker perturbs perceived travel time

• Drivers take a longer path due to perceived congestion

Sioux Falls, ND
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Attack on Navigation Applications II

Defense Model

• Detection of suspicious activity

• Detector raises an alarm

• Attack is defused if correctly detected

Observations

• Attacker has full observation of the network: vehicles, vehicle
locations, driver destinations

• Detector only observes reported perceived travel time

Objectives

• Attacker gains reward by maximizing the total travel time

• Detector prevents increase in total travel time

Sioux Falls, ND
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Attack detection through Reinforcement Learning

Let’s try PSRO

• The attacker has full graph observation

• The attacker has a constrained continuous action

• The detector has a partial graph observation

• The detector takes a boolean action, either to raise an alarm or not

DDPG as attack oracle

• The attacker should output perturbations for thousands of city roads

• General-Purpose Reinforcement Learning algorithms are infeasible even for a small city

• It requires millions of samples collected from the environment

• We need a robust and feasible attack oracle



Detection|HMARL|37/63

Introduction Research Approach Prevention Mitigation Detection Future Plans Appendix

Hierarchical Multi-Agent Reinforcement Learning as Attack Oracle

Idea

• We can divide the network into components of smaller size.

• Low-Level RL agents are assigned to each component

• A High-Level RL agent coordinates the low-level agents

Why a high-level coordinator?

• The total perturbations are restricted by a budget
• Component agents compete over the budget

• The high-level agent allocates the perturbation budget to the component agents

• The low-level agents distribute given perturbation allocation to road links
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Network Decomposition

Decompose network based on K-Means Clustering by edge distance without congestion

Original Sioux Falls Network Decomposed Sioux Falls Network
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Hierarchical Approach I

Sioux Falls, ND Transportation Network

Low Level Components

High Level Agent

Agent 4

Agent 3

Agent 1

Agent 2

Agent 4

Agent 3

Agent 1

Agent 2

Figure 12: Hierarchical Multi-Agent Reinforcement Learning
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Hierarchical Approach II
Reinforcement Learning Model

Normalize

µH

µ1 µ2 µk

Normalize Normalize Normalize

b̂k

b̂2

b̂1

...

a1 a2 ak

a1 a2 ak

Q1 Q2 Qk

b̂1 b̂2 b̂kôkô2ô1

QH

ô2ô1 ôk

oH

b̂

...

oH

qH

q1 q2 qk

High Level Agent

Low Level Agents
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Hierarchical Approach III
Reinforcement Learning Observations

Each Low-Level observes 5 features per each edge e
1. Number of vehicles that are at an intersection with an unperturbed shortest path to the destination
that passes through e

2. Number of vehicles currently on e
3. Number of vehicles that are at an intersection that will immediately take e as their shortest path
without perturbation

4. Sum of remaining travel times of vehicles currently on edge e
5. Number of vehicles that are on an edge but will take e as the shortest path

High-Level observes

The sum of each feature per component as summary
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Hierarchical Approach IV
Rewards and Updating

Aim of the attacker is to maximize total travel time

• Low-level agents gain reward by the number of vehicles in its component

• High-level agent gain reward by the total number of vehicles

• This is equivalent to maximizing the total travel time.

Since the agents cooperate, all agents can be trained simultaneously.
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Evaluation
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Future Plans and Timeline
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Published Work

• T. Eghtesad et al; Adversarial Deep Reinforcement Learning based Adaptive Moving
Target Defense; Conference on Decision and Game Theory for Security
(GameSec’20)

• T. Eghtesad et al; Hierarchical Multi-Agent Reinforcement Learning for Assessing
False-Data Injection Attacks on Trans-portation Networks; International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’24); accepted for publication
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Future Work and Timeline

• Spring 2024: Finalize the threat and defense model of false data injection detection in
navigation applications.

• Spring 2024: Adjust our HMARL framework for the new threat model.

• Summer 2024: Development of the PSRO algorithm for detection of false data injection
in transportation networks assuming a black-box model where neither the adversary nor
the defender has access to the opponent’s strategies and only observes its consequences.

• Fall 2024: Extend and develop the mitigation model with larger, more realistic ICS for
the mitigation tasks.
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Other Published Articles

• O. Akgul, T. Eghtesad, et al; Bug Hunters’ Perspectives on the Challenges and Benefits of the Bug Bounty
Ecosystem; USENIX Security’23; Core Ranking A*; Distinguished Paper Award (Top %5)

• O. Akgul, T. Eghtesad, et al; Exploring Challenges and Benefits of Bug-Bounty Programs; WSIW’20

• S. Eisele, T. Eghtesad, et al; Safe and Private Forward-Trading Platform for Transactive Microgrids; TCPS; Dec 2020

• S. Eisele, T. Eghtesad, et al; Blockchains for Transactive Energy Systems: Opportunities, Challenges, and
Approaches; IEEE Computer; Sep 2020

• C. Barreto, T. Eghtesad, et al; Cyber-attacks and mitigation in blockchain based transactive energy systems;
ICPS’20

• S. Eisele, T. Eghtesad, et al; Decentralized Computation Market for Stream Processing Applications; IC2E’22

• S. Eisele, T. Eghtesad, et al; Mechanisms for Outsourcing Computation via a Decentralized Market; DEBS’20



Future Plans|Other Projects|48/63

Introduction Research Approach Prevention Mitigation Detection Future Plans Appendix

References I

[Combita et al., 2019] Combita, L. F., Cardenas, A., and Quijano, N. (2019).
Mitigating Sensor Attacks Against Industrial Control Systems.
IEEE Access, 7:92444–92455.

[Eghtesad et al., 2023] Eghtesad, T., Li, S., Vorobeychik, Y., and Laszka, A. (2023).
Hierarchical Multi-Agent Reinforcement Learning for Assessing False-Data Injection Attacks on Transportation Networks.

[Eghtesad et al., 2020] Eghtesad, T., Vorobeychik, Y., and Laszka, A. (2020).
Adversarial Deep Reinforcement Learning Based Adaptive Moving Target Defense.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 12513 LNCS, pages
58–79.

[Giraldo et al., 2019] Giraldo, J., Urbina, D., Cardenas, A., Valente, J., Faisal, M., Ruths, J., Tippenhauer, N. O., Sandberg, H., and Candell, R. (2019).
A Survey of Physics-Based Attack Detection in Cyber-Physical Systems.
ACM Computing Surveys, 51(4):1–36.

[Lanctot et al., 2017] Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Pérolat, J., Silver, D., and Graepel, T. (2017).
A unified game-theoretic approach to multiagent reinforcement learning.
Advances in neural information processing systems, 30.

[Lillicrap et al., 2015] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2015).
Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971.

[McMahan et al., 2003] McMahan, H. B., Gordon, G. J., and Blum, A. (2003).
Planning in the presence of cost functions controlled by an adversary.
In Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages 536–543.



Future Plans|Other Projects|49/63

Introduction Research Approach Prevention Mitigation Detection Future Plans Appendix

References II

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen,
S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015).
Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533.

[Paridari et al., 2018] Paridari, K., O’Mahony, N., El-Din Mady, A., Chabukswar, R., Boubekeur, M., and Sandberg, H. (2018).
A Framework for Attack-Resilient Industrial Control Systems: Attack Detection and Controller Reconfiguration.
Proceedings of the IEEE, 106(1):113–128.

[Prakash and Wellman, 2015] Prakash, A. and Wellman, M. P. (2015).
Empirical Game-Theoretic Analysis for Moving Target Defense.
In Proceedings of the Second ACM Workshop on Moving Target Defense, pages 57–65, New York, NY, USA. ACM.

[Rahmatnejad et al., 2023] Rahmatnejad, V., Wei, Y., and Rao, G. (2023).
Recent Developments in Bioprocess Monitoring Systems.
pages 39–66.

[Schoon, 2020] Schoon, B. (2020).
Google Maps ‘hack’ uses 99 smartphones to create virtual traffic jams.

[Schulman et al., 2015] Schulman, J., Levine, S., Moritz, P., Jordan, M. I., and Abbeel, P. (2015).
Trust Region Policy Optimization.

[Schulman et al., 2016] Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and Abbeel, P. (2016).
High-Dimensional Continuous Control Using Generalized Advantage Estimation.



Future Plans|Other Projects|50/63

Introduction Research Approach Prevention Mitigation Detection Future Plans Appendix

References III

[Schulman et al., 2017] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).
Proximal Policy Optimization Algorithms.

[Transportation Networks for Research Core Team, 2020] Transportation Networks for Research Core Team (2020).
Transportation Networks for Research.
https://github.com/bstabler/TransportationNetworks/.

[Urbina et al., 2016] Urbina, D. I., Giraldo, J. A., Cardenas, A. A., Tippenhauer, N. O., Valente, J., Faisal, M., Ruths, J., Candell, R., and Sandberg, H. (2016).
Limiting the Impact of Stealthy Attacks on Industrial Control Systems.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pages 1092–1105, New York, NY, USA. ACM.



Appendix||51/63

Introduction Research Approach Prevention Mitigation Detection Future Plans Appendix

Appendix



Nash Equilibrium||52/63

Nash Equilibrium Reinforcement Learning PSRO

Nash Equilibrium



Nash Equilibrium||53/63

Nash Equilibrium Reinforcement Learning PSRO

Policies and Strategies I
Pure Strategy

• A Strategy is a policy function that,
given the current observation from the environment,
produces an action to be taken by the agent.

• A Pure Strategy is a deterministic policy function.

• The Pure Strategy Set is the set of all possible pure
strategies available to the player.

• A Pure Strategy Profile is a combination of all players
strategy.

• The Utility Profile for player p is the amount of utility or
reward the player p receives when players use a given
strategy profile.

Pure Strategy

π(o) 7→ a

Pure Strategy Set

πp ∈ Πp

Pure Strategy Profile

π ← {π1, π2, · · · , πp}

Utility Profile

Up(π)
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Policies and Strategies II
Mixed Strategy

We need a mechanism to represent stochastic
policies.

• A Mixed Strategy is a probability distribution
over the player’s pure strategy set.

• The Mixed Strategy Set is the set of all mixed
strategies available to the player.

• The Mixed Strategy Utility Profile can be
calculated using Pure Strategy Utility Profile.

Mixed Strategy Utility Profile

Utility from π times the probability that π occurs
summed over all strategy profiles π ∈ Π.

Mixed Strategy

σp(πp) ∈ [0, 1]

Πp∑
πp

σp(πp) = 1

Mixed Strategy Set

σp ∈ Σp

Mixed Strategy Profile

σ ← {σ1, σ2, · · · , σp}

Utility Profile

Up(σ) =
∑
π∈Π

 P∏
p

σp(πp)

 ·Up(π)
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Policies and Strategies II
Best Response and Nash Equilibrium

• All players are rational. Thus, they pick a strategy
that maximizes their utility.

• A Best-Response Mixed Strategy provides
maximum utility for the player given the strategy of
opponents:

• Assuming all players are using their best response,
the strategy profile is a Mixed Strategy Nash
Equilibrium (MSNE).

Best-Response Mixed Strategy

σ∗
p (σ−p) = argmax

σp∈Σp
Up({σp,σ−p})

Mixed Strategy Nash Equilibrium

∀p∈P∀σp∈Σp : Up(σ
∗) ≥ Up({σp,σ

∗
−p})

What is Mixed-Strategy Nash Equilibrium?

All players are playing with their best-response to all opponents’
strategies, and neither player can increase their expected utility without
having their opponents change their strategy.
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Reinforcement Learning Formalized I
Deep-Q-Learning I

• Extension of Q-Learning by
[Mnih et al., 2015]

• Deterministic

• Off-Policy

• Value Iteration

• Action-Value Method

• Model-Free

RL Optimization Problem

optimize π(ot) 7→ at

s.t. max E

[ ∞∑
τ=0

γτ · rt+τ

∣∣∣∣∣ π,σ−p

]

Environment Opponent(s)Agent
at

ot

rt

σ−p
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Reinforcement Learning Formalized II
Deep-Q-Learning II

The Parametric Q Function

Qθ(ot, at) = rt + E

[ ∞∑
τ=1

γτ · rt+τ

∣∣∣∣∣ π
]

Bellman Mean Squared Error

L(θ) = 1
|X|

X∑
x

 rt
x + γ · argmax

a′
Qθ(ot+1

x , a′) − Qθ(ot
x, at

x)

2

Policy Function

at ← π(ot) = max
a′

Q(ot, a′)

Experience

x = ⟨ot
x, at

x, ot+1
x , rt

x⟩ ∈ X ∼ E
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Reinforcement Learning Formalized III
Deep Deterministic Policy Gradients (DDPG)

argmaxQθ ⇆ L(θ)

maxQθ ⇆ π

Given that we have
Discrete actions,
we can enumerate

them.

What if the action is not discrete? [Lillicrap et al., 2015]

Parameterized Policy Function

at ← π(ot) = µΘ(ot) ≈ argmax
a′

Qθ(ot, a′)

Policy Performance

J(Θ) =
1
|X|

X∑
x

Qθ
(

ot
x, µ

Θ(ot
x)
)
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Reinforcement Learning Formalized IV
Stochastic Policy Gradient I

• Actor-Critic Methods

• Stochastic

• On-Policy

• Policy Iteration

• Value Method

• Model-Free

Improvements

SPG algorithm are improved with
GAE [Schulman et al., 2016],
TRPO [Schulman et al., 2015], and
PPO [Schulman et al., 2017].

RL Optimization Problem

optimize π(ot) 7→ at

s.t. max E

[ ∞∑
τ=0

γτ · rt+τ

∣∣∣∣∣ π,σ−p

]

Environment Opponent(s)Agent
at

ot

rt

σ−p
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Reinforcement Learning Formalized V
Stochastic Policy Gradient II

The idea of SPG is to update policy to increase the probability of actions with a positive advantage.

Stochastic Actor

at ∼ πΘ(ot)

Value Function

Vπ(ot) = E

[ ∞∑
τ=0

γτ · rt+τ

∣∣∣∣∣ π
]

Advantage

A(ot, at) = rt + γ ·Vπ(ot+1)−V(ot)

Policy Performance

J(Θ) =
1
|X|

X∑
x

log πΘ(at
x|ot

x) ·A(ot
x, at

x)

Value Function Loss

L(θ) = 1
|X|

X∑
x

(
rt

x + γ ·Vπ(ot+1
x )−Vπ(ot

x))
)2

Experience

x = ⟨ot
x, at

x, ot+1
x , rt

x⟩ ∈ X ∼ T
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Policy Space Response Oracles

Π0start Πt π∗,t+1
p (σ∗,t−p)

Πt+1
p ← Πt

p ∪ {π∗,t+1
p }

σ∗,t

Finish

S
olve

Restricted Game
Ca
lcu
la
te

BR

Add new

BR
to
strateg

y
se
tsC

al
cu
la
te
ne
w
ut
ili

ty
va
lue
s

Not Improving

PSRO algorithm [Lanctot et al., 2017] based on Double Oracles [McMahan et al., 2003].

Require: Initial strategy sets Π ;
Compute Expected Utilities Uπ for each
strategy profile π ∈ Π ;
Compute MSNE of Π as σ∗ ;
for many epochs do

for each player p do
for many episodes do

Sample π∗
−p ∼ σ∗

−p;
Train π+

p (π−p) using InRL;
end
Πp ← Πp ∪ {π+

p };
end
Compute Uπ for new strategies ;
Compute MSNE of Π as σ∗ ;

end
Output current solution σ∗ ;
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Policy Space Response Oracles

Environment AttackerDefender

envd[σa]

enva[σd]

at
d

ot
d

ot
a

at
a

σ∗
d

σ∗
a

Result: set of pure policies Πa and Πd

Πa ← attacker heuristics;
Πd ← defener heuristics;
while Up(σp, σ−p) not converged do

σa, σd ← solve_MSNE(Πa,Πd);
θ ← random;
π+

a ← train(T ·Ne,enva[σd], θ);
Πa ← Πa ∪ π+

a ;
assess π+

a ;
σa, σd ← solve_MSNE(Πa,Πd);
θ ← random;
π+

d ← train(T ·Ne,envd[σa], θ);
Πd ← Πd ∪ π+

d ;
assess π+

d ;
end
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